L . University of lowa
I Iowa Research Online y

The University of lowa's Institutional Repository I Owa Resea rch O n I i n e

Theses and Dissertations

2006

Conversations with an intelligent agent: modeling and integrating
patterns in communications among humans and agents

John Ray Lee
University of lowa

Follow this and additional works at: https://ir.uiowa.edu/etd

Cf Part of the Electrical and Computer Engineering Commons
Copyright 2006 John Ray Lee

This dissertation is available at lowa Research Online: https://ir.uiowa.edu/etd/61

Recommended Citation

Lee, John Ray. "Conversations with an intelligent agent: modeling and integrating patterns in
communications among humans and agents." PhD (Doctor of Philosophy) thesis, University of lowa,
2006.

https://doi.org/10.17077/etd.mootf4mu

Follow this and additional works at: https://ir.uiowa.edu/etd

b Part of the Electrical and Computer Engineering Commons

www.manaraa.com

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.mootf4mu
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages

CONVERSATIONS WITH AN INTELLIGENT AGENT:
MODELING AND INTEGRATING PATTERNS IN COMMUNICATIONAMONG
HUMANS AND AGENTS

by
John Ray Lee

An Abstract
Of a thesis submitted in partial fulfillment
of the requirements for the Doctor of
Philosophy degree in Electrical and Computer Erging

in the Graduate College of
The University of lowa

July 2006

Thesis Supervisor: Adjunct Assistant Professorrandwilliams

www.manharaa.com

ABSTRACT

There is an overwhelming variation in the ways atelligent agent can
rationalize communication with a conversationaltipar. This variation presents many
incompatibilities that lead to the specializatidnconversational capabilities. This has
produced a plethora of models and ideas on homtatligent agent should understand,
interact with, and incorporate communication frorhutanan conversational participant.
This dissertation approaches this problem with tthesis that there exists a language
between that of human natural language and thevimehbreasoning of an intelligent
agent, and that this language is capable of nat onifying the various models used in
literature, but also provides the foundation fah@oretical framework for an engineering
methodology for building such models.

A theory of practical communication language is aleged, including the
introduction of the meaning-action concept, an egpive and powerful representation
based on speech-act and dialogue-act theoriegxXbpemded with notions of behavioral
operators as well as signatures that allow theadpes to incorporate structured and well-
defined concepts. An engineering methodology ss@nted for the construction of
concepts, operators and rules that create the dgegand model of a specific domain,
including methodology for the verification and \dtion of that language and model.

The resultant practical communication language oukilogy, based on the
combination of rational communication and meaningiea concepts, will introduce
several major enhancements to dialogue managemdrdse enhancements include the
use of meaning-action concepts as a shared mednghthe introduction of a shared
concept graph. This methodology will be used alaith various dialogue models from
human-human, human-agent and agent-agent commoni¢atconstruct a task-oriented
language and model called the task communicatiorguage framework. This
framework is then implemented within an intelligeagent in a real-time resource

management simulation.

www.manaraa.com

A sample output listing from actual human interactwith that implementation is
used to demonstrate that the resulting framewoesdndeed incorporate many of the
disparate models of communication and their cooedmg capabilities including
command and control, information seeking, notifmat and bother, clarification,
explanation, discussion, negotiation, mutual plagninterruption, feedback, adjustable

autonomy and corrective dialogues.

Abstract Approved:

Thesis Supervisor

Title and Department

Date

www.manaraa.com

CONVERSATIONS WITH AN INTELLIGENT AGENT:
MODELING AND INTEGRATING PATTERNS IN COMMUNICATIONAMONG
HUMANS AND AGENTS

by
John Ray Lee

A thesis submitted in partial fulfillment
of the requirements for the Doctor of
Philosophy degree in Electrical and Computer Erging
in the Graduate College of
The University of lowa

July 2006

Thesis Supervisor: Adjunct Assistant Professorrandwilliams

www.manharaa.com

Copyright by
JOHN RAY LEE
2006
All Rights Reserved

www.manharaa.com

Graduate College
The University of lowa
lowa City, lowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

John Ray Lee

has been approved by the Examining Committee
for the thesis requirement for the Doctor of Plojasy
degree in Electrical and Computer Engineering @tiily 2006 graduation.

Thesis Committee:
Andrew Williams, Thesis Supervisor

John P. Robinson

Thomas L. Casavant

Jim Cremer

Dan Thedens

www.manharaa.com

To Joni, my inspiration, my strength and my love.

www.manharaa.com

With God, All Things Are Possible

Mathew 19:26
The Bible (NIV)

www.manharaa.com

o Ayl

ACKNOWLEDGMENTS

I would like to thank my wife for standing by meyrmdvisor for advising me

through the paths of life, my family for always popting me and my friends for making

it fun.

www.manharaa.com

ABSTRACT

There is an overwhelming variation in the ways atelligent agent can
rationalize communication with a conversationaltipar. This variation presents many
incompatibilities that lead to the specializatidnconversational capabilities. This has
produced a plethora of models and ideas on homtatligent agent should understand,
interact with, and incorporate communication frorhutanan conversational participant.
This dissertation approaches this problem with tthesis that there exists a language
between that of human natural language and thevimehbreasoning of an intelligent
agent, and that this language is capable of nat onifying the various models used in
literature, but also provides the foundation fah@oretical framework for an engineering
methodology for building such models.

A theory of practical communication language is aleged, including the
introduction of the meaning-action concept, an egpive and powerful representation
based on speech-act and dialogue-act theoriegxXbemded with notions of behavioral
operators as well as signatures that allow theadpes to incorporate structured and well-
defined concepts. An engineering methodology ss@nted for the construction of
concepts, operators and rules that create the dgegand model of a specific domain,
including methodology for the verification and \dtion of that language and model.

The resultant practical communication language ouklogy, based on the
combination of rational communication and meaningiea concepts, will introduce
several major enhancements to dialogue managemdrdse enhancements include the
use of meaning-action concepts as a shared mednghthe introduction of a shared
concept graph. This methodology will be used alaith various dialogue models from
human-human, human-agent and agent-agent commoni¢atconstruct a task-oriented
language and model called the task communicatiorguage framework. This
framework is then implemented within an intelligeagent in a real-time resource

management simulation.

www.manaraa.com

A sample output listing from actual human interactwith that implementation is
used to demonstrate that the resulting framewodsdndeed incorporate many of the
disparate models of communication and their comedmg capabilities including
command and control, information seeking, notifmat and bother, clarification,
explanation, discussion, negotiation, mutual plagninterruption, feedback, adjustable

autonomy and corrective dialogues.

Vi

www.manharaa.com

TABLE OF CONTENTS

LIST OF TABLESttt ettt e e e e e e e e e e e e e e e e s s s s s bnnnneeaaaeeeaaeeeeaans X
LIST OF FIGURES ...ttt e Xi
CHAPTER
1 INTRODUGCTION ..ot e e e e e e e e e e e e e eeeeessaeeesnnnns 1
1Yo] (Y= (o] PP TRPUUUPPURRPPPPPN 1
[(0] 0] = o o TP PPPPURTRRRPPPRRPN 2
Approach and Methodologycoooiiiiiiiiiiiiee e 4
Contribution to Knowledgeoooiiiiiimc e 5.
Results & Significance of WOrKooouiieiieiiiiiiiiiiii e 6
2 BACKGROUND ...ttt e e e e e e eeeaeaeesba e eas 7
The Communication — Behavior SPectrumooovvvviiiiiiiiiiiiieeeeeeeeeeee 7
Communication: Language TheOrY ... 9
SPEECH ACES .. ———- 9
Dialogue Modelingcooeiiiiiiiiiiieeee e 10
DIAlOQUE ACES ...t eemmm e s 10
Dialogue STIUCLUIE......ciii it 6.1
Meaning-Action CONCEPLS.......euuuruuuiiiiiieee et e e e 17
Synopsis - Communication Perspectiveceeeeeceiiinneeeeeeeennenn. 18
Behavior: The Theory Of AQENCYuuuuiiimm e 19
The Agent Paradigm ... 19
Agent EMDOAIMENT........oooi i et eeeeeeees 21
Types and classifications of AQeNtS ... eeiiiiiiiiiiiiiiicee e, 22
AGENt StANAAIAS........coiiiiiiiiiiiiiiei e e e e e e e e e eeeeeaeeees 24.
AGENT ArCNITECIUINES ... ettt 26
Synopsis - AgeNCY PerspectiVecoooviveeeeeeiiiiieieeeeiiiie e 28
Agents and COMMUNICALIONooeeeeeetmmm e eeeeeeeeeeerinnaa e e e e e e eeaeeees 29
Communication amoNg AQENTSuiiiiieee s 29
DISCOUISE CONVENTIONScoiiieiiiieeeeeeees ot ettt e e e e e e e e e e aeaeeeens 34
DIalogUe SYSIEIMScoiiiiiiiiiiiiiiiee s s et e e e e e 37
Behavior Development ... 46
Synopsis — Melding Perspectives ... 51
Empiricism and RationaliSm..............uueimocciiiiee 15
The RaAtiON@lIST........coveiiiiiiiiiie e 53
The EMPIFICIST ..ceeiiiiiiiiiiiie e 53
Communication and BEhavior..............ooiiieeeeemreiiiiin e 54
Protocol ENQINEEIINGccooiiiieiiiiiieeee e 55
The Beginning of Protocol Engineering.........cccceeeeeeeiiiiiiieieiiiiiinnnnns 56
Rationalism and Empiricism in Protocol Engineering...................... 56
Protocol TeSHNG SUIESuuuiiiiii e 57
Communication and Interaction as a ProtoCol..cccco.........coovvviivinnnnnns 58
Design and Verification ProCESS o seeeeeeeeeeeeeeeeeeeeeeiiiiiinnens 61
Protocol Engineering Properties.............umeeeeeeeeeiieeeeeeiiiiiiiiiinennns 62
Approaches to Protocol Modeling...........coooeveeeiiiiiiiiiiiiiin 63
Theorem Proving for Agent Communication Protocals................... 68
ProtoCol VariationS...........uuuuuueiiiii i 9.6
Vi

www.manaraa.com

Communication and ProtOCOISc.ieie i eeeen 69

Revisiting the SPeCtrUM...........uuuiiiiiiii e 71
PRACTICAL COMMUNICATION LANGUAGEcvvviieeiiieveeiiiiiiiie 72
The Practical LanQUAagEoooeeieiiiiiit ettt 12
OrIgINS Of PCL...oiiiiiiiiee e s 75
HINES OF PCL ...t 76
Communication and BENAVIONcoouii oo 77
FINAING the GIUEeeeiie e e e 78
A Message-Based Medium...........oooooiiiiiiiiiiieiii e 79
Shared Medium SemaNTICSuuuuuiiiiii i 86
Dialogue MOEIS.........uuieiiiiieiee et 90
MESSAGE PrOCESSING.....uiiiiiiiiiieeiieeeet e e e e e e e e e e e e e eeeeeeeebban s 92
DISCOUISE REASONING ...eevevviiiiiniiiiiaaeeeeeeeeeeaisiiitniaaaaaaeseeeeeaeaeeeeeeennenes 93
The Interaction MOAeloooiiiiiiiiiii e 97
Interaction Model Generation................uceeeeieeieiiiiieeeeeii e 99
Interaction VerifiCationooooiiiiiuiimmmmeeeietiense e e e e e e e e e eeeeeeeeennaens 100
Interaction Validationeeiiiiiiii oo 100
Practical Communication Language Methodology...............ccce.... 101
SYNOPSIS .ttt ettt a e e as 101
TASK COMMUNICATION LANGUAGE ...t 102
Task Concepts and OPEratorScieeieeeeeeeeiiiiiiiiiiaaaa e e e e e e e eeeeeeeeeneens 102
Representing Task-Oriented CONCEPLS.......cceveeeivviiiiniiiiiiineeeeeeeeen 102
Task Concept CONSLIUCLIONceuuuvutmmmmmmn e e e eeeeeeeeeiiirinia s 104
TASK OPEIALOIS. . .uuuiiiiiieeee et sssmme e e e e e e e e e e e e e e eeeeeeenennnnns Q8L
Dialogue Modes and SEQUENCEScoiieeeeeemmiee e 108
Layering of Dialogue MOAES.............uuuuuimmmmmm e 109
Protocol Engineering ReVISItedieeeeiiiiiii e 109
UtINZING Petri NETScooiiiiiiiiiiiiiiit et e e e e e e e eeeeeeenend a1
Natural Language t0 TCLooiiiiiiiiiiiiiieeee e n1
SYNOPSIS .ttt ettt aaa e e as 111
EMPIRICAL INVESTIGATIONS.....ootiitiiiiaes it 112
Conversational CapabilitieS.............uuuuireciiiiii e 12
TUIMN TaKING oo e s 112
HUMAN INITALIVE ... e e eeeeeaees 31
AGENT INITIALIVEcoiiiiiieieiii s 117
MUltiple-PartiCiPant...........oooiiiiiiiiiiii et 117
Enhanced Agent Capabilities.............ouvicememmmieeieeeee e 132
Operator and Concept LAYering.........cooueeuuuuiieineeeeeeeeeeeeeeeeeiiiiiiae e 133
SYNOPSIS .ttt ettt aaa e e as 134
DISCUSSION . ..cciieiitttiteeae ettt s e e e e e e e e e e e e eeeeeesaeneas 136
Related FIeldSuii e 136
Agent-Agent COMMUNICALIONuuiiiiieiis e 136
Business Process Management..............scecceemmmervrnnnninneneeeeeeeeeeeeee 137
The Semantic WeD ... 137
Dialogue ManagemMeNt.........cooueeeeeeeeee e e e e e eeeeeeeabnaa s 138
Human Robot INteractionoooeveiiiiiiiiiiiiiiiiieee e 138
viii

www.manaraa.com

FULUIE WOOTK e e e e 139

Understanding CONEXEScccvvuuiuuuuininmmmmmmn e e e eeeeeeeeieiniin e e e e e e 139
ShIft IN CONIOL...ccoeiiiiiii e 140
SUMIMAIY .ttt ettt eeeemm e e e e e eett e e e e e eeenn e e e eaeessan e eaeaannees 141
CONCIUSION .ttt e+ttt e e e e e e e e e e e e e e eeeeeeeas 142
APPENDIX
A PARTIAL TCL LANGUAGE DEFINITIONcuuiiiiiiiiriiiiiiiineee e 143
ADSTrACt CONCEPLS .. .uuiiii et ceeeem e 143
[N\ 7= U1 o o [P T T 143
(OF0] (T NV 01T J PRSPPI 144
MOAIFIEIS ...t e e e e e e e e e e e e ae b s 146
QUANTIZALION ...oeeiiic e s et e e e e 148
Sl e e 149
11 1= STRPPRTP 151
Y 0 1= o] TP TUPPPPTTRRN 153
Relation, States and EVENLSccooi oo eeeeeeeeeeeetv s 155
ODJECHIVES ...ttt ettt e e 158
Actions, Procedures and Planscmeeeeiiiieieeiiiiiiienn 159
(@ 10T =SSP 164
Changes iN CONCEPLS ..coeevrreriiiiiiiiee et e e e e eeeeaneeees 165
AFGUMENTATION ..ttt ettt e e e e e e e e e e e e eeeeeennnnes 6L6
AULONOMY ..ttt e e e e e e e ees 168
FEEADACK. ... i ittt 170
INEEIPretationoooiiiieeie e 172
INtEractive OPEIatOrSccoiiiiiiiiiiee e ettt e e e e e e e e eeeeaeneee 175
[N\ 7= U1 To o [P T 175
(OF0] (T NV 01T J TSR RP 175
SIMPIE MESSAGES ... ittt e e et e 177
Orders and ACHIONSoooeeiiiieieieeeeee et e e e e e e eeeeeaeeens 178
QUESTIONS ...t e e e e e e e aaaaa 180
Suggestions and Negotiationuuuuuueiiiiiniee e 182
REQUESTS ... st ettt e e e e 183
AGENT OPEIALOIS. ...ttt e e e s 185
Helper FUNCHIONS. 190
MaCIO FUNCLIONS ... eemmmm e 194
B IMPLEMENTATION DETAILSot e 200
Intelligent Agent ArChItECIUIevv i (02{0]
Stratagus ENVIFONMENL.............uuuiiuuee sttt e e e e e e e e e eeeeeeeseennnne 200
The Dialogue Reasoning ENGINeuuuieemmiiiiiiiiiiaaanee e eeeeeeeeeeeenns 201
SyStem INtEGratioNuuuuiiuiiiiiiee e 201
C EXAMPLE HUMAN SESSION ...ccciiiiiiitiiiis i 203
e e] N[O S T 227
IX

www.manaraa.com

LIST OF TABLES

Table 1: LINLIN Dialogue Tag Set........ccooiiiiiiiiiiiiiiiiiiiiiieeeee e 12
Table 2: HCRC Dialogue Tag Setc.commmmmeiiiiiiiiiiieeie et 13
Table 3: DAMSL Dialogue Tag Sel.........uuiiiacaeee e 14
Table 4: TRAINS Dialogue Tag Set.........uuuiiiiieiiiiiiiaeeaiiie e 15
Table 5: Types of Behavior Implementations. . e ..vvuveiiiiiieeeees a7
Table 6: Dialogue Types of Interactive Behavior Blepmentooovvvviveeiiiiinnennnn. 50
Table 7: Human-Agent Conversational Paradigms............cccoooviiiiiiiiiiiiiiiiiieeeeen. 82
Table 8: Cardinal-Variant Human-Agent Single-Cosation Paradigms....................... 82
Table C1: Session Listing - LINE KEY.......ccouuiiiiiiiiiiiiieeei e 203
Table C2: Example Human Session LiStiNgccceeiiiiiiiiiiiiiiiiiieceeeeeeeeee e 204

www.manharaa.com

LIST OF FIGURES

Figure 1: The Agent Paradigm................ e eeeeeeeruuumnniiaaaaaeeeeeeeeeeeeeeeeeeneeeeeesennene 20
Figure 2: Empirical Approach to Protocol TeStNG.........ceuuuvvviiiiiiiiieeeeeeeeeeeeeeeeeeee 57
Figure 3: Human Computer Communication as a LayBretbcol...................ccccceeee 59
Figure 4: Validation of the Interaction ProtoCol................cceeiiiiiiiiiiiiiiiiiiiieieeeeee 60
Figure 5: Iterative Approach to SPecCifiCatioN ..cccc....uvveuiiiiiiieiiee s 62
Figure 6: The Communication Behavior SPectrum.............cooovvviiiiiviiiiiiinnieeeeeeeen 77
Figure 7: The Shared Mediumooiiicommmmm oo 78
Figure 8: MeSSage HEAUETuuuetimmmmms e ae e e e e e e e e e e e e e eeeeeeeeebb s s 80
Figure 9: Core Concepts of the Shared Medium............coooiiiiiiiiiiiiiiiieeee 88
Figure 10: Core Concept Operators of the SharedMed................cooeriiiiiiiiciinnnenn. 89
Figure 11: The Dialogue MOdEl..........coo oo 91
Figure 12: DISCOUISE RUIEcooiiiiiiiiiit e e 96
Figure 13: Dialogue Model EXECULION.........ccoemmmiiiiieiie e 96
Figure 14: Follow Orders RUIEooooiiiee e 97
Figure 15: The Interaction MOel ... 98
Figure 16: Generation of Interaction Modelooouiiiiiiiieeeeee, 99
Figure AL: AbStract CONCEPL KEY.....uuuuuuuieeieeeiiiiiiiiee e 143
Figure A2: Abstract Concept — Parent CONCEPL e cevrrrrrrrmniiiiaaeeeeeeeeeeeeeeeeeiieeees 145
Figure A3: Abstract ConCept — ODJECT........uuumemmiiiiiiieeieie e 145
Figure A4: Abstract Concept — CONJUNCHIONeeuueiiriiiiiiiie e 146
Figure A5: Abstract Concept — DISJUNCHION....ccccccoiiiiiiiiiiiiiiiiie e 146
Figure A6: Abstract Concept — MOIfier.......ocooeciiiiiiiiii s 148
Figure A7: Abstract Concept — QUANTILYoeviuiiiiiiiiiiiieie e 149
Figure A8: Abstract Concept — ChangeQuantityccooeeeeiiiieiiieiiiiiiiii e 149
Figure A9: ADSIract CONCEPL — ST cmeerteiiaaee e e e e e e e e et eeeeeeiieebeeneneenanne 150
Figure A10: Abstract Concept — EnumeratedSet............ccccvveeiiiiiiiiiiiiciiieee 150

Xi

www.manaraa.com

Figure Al11:
Figure A12:
Figure A13:
Figure Al4:
Figure Al5:
Figure Al6:
Figure Al17:
Figure A18:
Figure A19:
Figure A20:
Figure A21:
Figure A22:
Figure A23:
Figure A24:
Figure A25:
Figure A26:
Figure A27:
Figure A28:
Figure A29:
Figure A30:
Figure A31:
Figure A32:
Figure A33:
Figure A34:
Figure A35:
Figure A36:
Figure A37:

Abstract Concept — SUDSEL.......coooiiiiiiiiiiiii e 151
Abstract Concept — TIMESPANuuueeerieeeiiieiieeeeeiiii e 152
Abstract CoNCePt — LOCATIONuuemeeeeiiiiiiiiae e e e eeeeeevveeebennnnees 153
Abstract Concept — DirectionLOCatiON...........cccvvviiiiiiiiiiiiiieae e 154
Abstract Concept — ProXimityooce.eeeeeeeimmiiiiiiinnee e eeeeeeeeeeeieeeeee. 155
Abstract Concept — RelativeLocation.................uuvvviiiiiiiiiieeeee e, 155
Abstract Concept — MagnitudeRelatiQn cc.........cceeveeeiiiiiiiiiiiiiiiiiiiens 156
Abstract Concept — CompareRelation.............ccoooeeeeiiiiiiiiiiiiiiiiinnns 156
Abstract Concept — StateINTIME ..coeeeeeeeniiiiiiee e 157
Abstract Concept — StateChangecceeeeiiiiiiieiiee i 157
Abstract Concept — EVENL........coiiiiiiiiiiiiiiii e eeeeeee 158
Abstract Concept — ODJECHIVE.....coreeiiiiie s 159
AbStract CONCEPt — DESITE....... o eeeeeeeeiiiiiiiiiiiaaaaa e e e e e e eeeeeeeeeeeneees 159
Abstract CoNCePt — ACHIONuueeemmieee e 160
Abstract Concept — ACHIONSEQUENCE e oo 161
Abstract Concept — ContinUalACHION...........oovvviiiiiiiiiiiii e 162
Abstract Concept — ProCedure.....coooooeveiiiiieiiiiiiieee e 162
Abstract CoNCEePt — PlaNcomeeeeeriiiiiaiseee e e e eeeeeeeeivvveeenaeeeens 162
Abstract Concept — RestrictionQuantity.............ccoevvvvveuiiiiinieeeeeeeenn 163
Abstract Concept — ACtIONPreCedeNCe . uuuiiieeieeeeeeieeieeeeeeeiiiiiiae 163
Abstract Concept — QueryParameter.................ooovviiiiiiiiiiinineeeeeeen. 164
Abstract Concept — PossibleParametei®&l................oooooevieiiienenennnnn, 165
Abstract Concept — Changeccieiiiiiiiiee s 165
Abstract Concept — MOdIfiCatION ...caeeevviiiiiiiiee e 166
Abstract Concept — Refinement.....cco.....ooooiiiiiiii e, 166
Abstract Concept — INFEreNCeccooeeeeiveiiiiiiieee s 167
Abstract Concept — ArQUMENT 167
Xil

www.manaraa.com

Figure A38: Abstract Concept — EXPlanation..ooeeereeeeeeeiiiiieieeeiiiiiiiias 167

Figure A39: Abstract Concept — ConClUSIONOf ..o 168
Figure A40: Abstract Concept —PermiSSionccceuuuiiiiiiiiiiiii s 169
Figure A41: Abstract Concept — ACtIONPEeIrMISSIOMuuu .. oeeeiieeeeeieiieeeeeeiiiiiiie 169
Figure A42: Abstract Concept — AUtONOMICSHIfL ceeeeeteniiiiiiiie 169
Figure A43: Abstract Concept — Problem......co e, 171
Figure A44: Abstract Concept — SOIULION......eemuiiiiiiiiiie e 172
Figure A45: Abstract Concept — Affirmationccccoeeiiiiiiiiiiiie 172
Figure A46: Abstract Concept — ReferenCe ... i i 173
Figure A47: Abstract Concept — MEaANING ... eeeeeiiiiiiiiiiiiiiiiiiraaae e e e e eeeens 173
Figure A48: Abstract Concept — NomencClature............ooovevviieiiiiiiiiinnee e 174
Figure A49: Abstract Concept — INterpretation wcuuu....coeeee oo 174
Figure A50: Abstract Operator — Parent OpPeratQlu.uuveeueriininneeeeeeeeeeeeeeen. 175
Figure A51: Abstract Operator— CONJUNCLION.uiururiiiaieeee e 176
Figure A52: Abstract Operator— DiSJUNCLION...cccoc o oiiiiiiiiiieieeiii e 176
Figure A53: Abstract Operator — Tell........oco i 177
Figure A54: ADSEract OPErator — ASSEIT...... o eeeeeeeeieiieiieiiiiiiiirae e e aeaaaaee s 177
Figure A55: Abstract Operator — NOtIfYccoaaeiiiiiiii e 177
Figure A56: Abstract Operator — Warnoccccccuveiemiiiiaie e eeeeeeeeeeveennaeees 178
Figure A57: Abstract Operator — OFUENcceeeee e et 178
Figure A58: Abstract Operator — CONfirM ... e 178
Figure A59: Abstract Operator — Plan ... eeee e 179
Figure A60: Abstract Operator — EXECULE ... eeeeee 179
Figure A61: Abstract Operator — ADANAON..... .o eeeeeeiiiiiiiiiiiiiieraa e e e 179
Figure A62: Abstract Operator — QUENYcccceeuururmmniiiaaaaeeeeeeeeeeeeeeeeeennennnnnnnneees 180
Figure A63: Abstract Operator — ANSWEr (YES/N0)ccan o aiieeeeeeaiiieeeeeiiiiiiiiiee e 181
Figure A64: Abstract Operator — Answer (With Cotlfen.............ccvveeiiiiiinieeeeeneneeeeee, 8n
Xiii

www.manaraa.com

Figure A65: Abstract Operator — PrOPOSEcccceeeiiiiiiiiiiiiiiiiiiiinae e e e e e eeeeeeeeens 182

Figure A66: Abstract Operator — COUNtEIrPIrOPOSEacaan i i i e eeeeeeeieeeeeeiiiiiiie e 182
Figure A67: Abstract Operator — ACCEPT ccceeeieriiiiiiae e enaaeees 183
Figure A68: Abstract Operator — REJECL...... o iieeeeeeiiieeiiieiii e 183
Figure A69: Abstract Operator — REQUESTccceveiiiiiiiiiiiiiiiiiiinee e eeeeee 183
Figure A70: Abstract Operator — APPIOVEcceeeeeeeeeeiiiiiieeeeiiiiiiieee e aa e e 184
Figure A71: Abstract Operator — DENY........cccceemiiiiiiieiiiieeeeeeeeii e 184
Figure A72: Abstract Agent Operator — Evaluate ATLO.ceevvvvveiiiiiiiieeeeeee, 851
Figure A73: Abstract Agent Operator — EvaluateQuery.............cooovvvviivvnneiiinnnennn. 851
Figure A74: Abstract Agent Operator — GetPossiblafeterValues.......................... 186
Figure A75: Abstract Agent Operator — QueryRespblageh.............cccceeeeiiiii, 186
Figure A76: Abstract Agent Operator — EvaluatePsaha...........cccooevvvieiiiiiiiiiiennninn 618
Figure A77: Abstract Agent Operator — EvaluateAtaape.............coevvvvvviivveiininnnnennn. 187
Figure A78: Abstract Agent Operator — EvaluateRIBPaC...........ccoeeeeeeiieiiiiieeiiiiiiiinnee 187
Figure A79: Abstract Agent Operator — EvaluateReohl..............cccooveeiiiiiiiiiiiiiiiiiiin, 188
Figure A80: Abstract Agent Operator — PermissionB@n...............ccccceeeeiiiiieeieennneene. 188
Figure A81: Abstract Agent Operator — RegisterNCaifion..................cceeeiiieniiiennennnn. 188
Figure A82: Abstract Agent Operator — ApplyMeaning...............cvveecieiiiiieeeeeeeeeeeen. 189
Figure A83: Abstract Agent Operator — EvaluateCleai@pncept............coeeevvvvvviiinnns 189
Figure A84: Abstract Agent Operator — EvaluateKrengeoevviiviiiiiiinnnnnn. 189
Figure A85: Abstract Agent Operator — EvaluateAotorcShift..............ccccveeiinnnnn. 189
Figure A86: Helper Function — GetIntent..........cc..uuueiiiiiiiiiiie e 190
Figure A87: Helper Function — GetGeneratorc....oooviioiiiiiiniiiiiiieeeeee e 190
Figure A88: Helper Function — ISRefinementouuviiiiiiiiiiieeiieees 191
Figure A89: Helper Function — ParameterMatchInFQCus................coooeiiiiiiniiinnenne. 191
Figure A90: Helper Function — AddParameter..............ccccvviiiiiiiiiiiieiiieeeeeeneas 191
Figure A91: Helper Function — ReplaceParameter................coooevveeviieiiinniiinnnnnne. 192
Xiv

www.manaraa.com

Figure A92: Helper FUNCLION — COIlISIONuemmeeiiiiiiiiiieieee e 192
Figure A93: Helper FUNCLION — MEIQe........couuuuiiiiiieeeeeeeeeeeeeee e 193
Figure A94: Helper Function — GetROOICONCEPT ceeeeeerrviiiiiiieieeiieieeeeeeeiiivie 193
Figure A95: Helper Function — FINAParametercccccvviiiiiiiiiiiieieeeeeeeeeeesiaes 193
Figure A96: Helper Function — ContainSCONCEPL.........uiiiiiiiereeiieiieeeeeeiiiiiiiiee 194
Figure A97: Helper Function — GetNeXtINSet ...cccoovvviiiiiiiiiiiii e 194
Figure A98: Macro Function — ResolveCoNnjuNCHION.cue. . vvveeeiiiiiiiiieeeeeeeeeeeee 195
Figure A99: Macro Function — ReSolveDISJUNCHION............uuuviiieiiiiiiiiieeeeeeeiiee 195
Figure A100: Macro Function — ReWItEQUETYcueveviiiiiiiieiiiiiieeieiiieee 196
Figure A101: Macro Function — HandleREeSPONSE ameecee.iiiiiiiiiiiiiiiiiiieieeeeeeeee 196
Figure A102: Macro Function — HandleChange........ccccccooeviiiiiiiiiiiiiiiiiieeeeee 196
Figure A103: Macro Function — HandleFOCUScccceeiiiiiiiiiiiiiiiiee 196
Figure A104: Macro Function — HandleFeedbacK.................eevvviiii. 197
Figure A105: Macro Function — HandleReinterpret@atio...............cccccvvviiiiieeiinnneenenn. 719
Figure A106: Macro Function — LOOKFOrwardccee..oooeeiiiiiiiiiiiiiiiiiiieeeeee 198
Figure A107: Macro FUNCHION — AQVANCE ... 198
Figure A108: Macro Function — MergeCoNCePLSccevveeeevrvviirniiiiiieenee e 198
Figure A109: Macro FUNCHON — I ... 199
Figure A110: Macro Function — greater-than ...c...ccccceeeeeeiiiiiiiiicceeeeen 199
Figure A111: Macro Function — equality.......ccceeeuueiieiiiiiiniee e 199
Figure B1: The System INtegration........... e eeeeeeanraaeeeeeeeeaeeeeeeeeienennnnnnnnneennnnns 202

XV

www.manaraa.com

CHAPTER 1
INTRODUCTION

This dissertation addresses the overwhelming wadaetvays an intelligent agent
can rationalize communication with a conversatigraatner, be it a human or an agent.
Currently, this variety presents many incompatiiei that often lead to the specialization
of conversational capabilities. However, this ditgtion argues the thesis that there
exists a language between that of human naturgukege and the behavioral reasoning of
an intelligent agent, and that this language isablgof not only unifying the various
models used in literature, but also provides thundlation for a theoretical framework for
an engineering methodology for building such madeldhe theoretical aspects of this
dissertation are demonstrated through a proof-otept model by incorporating a

conversational intelligent agent inside a resounegagement simulation.

Motivation

The rise of the personal computer has forever aidne way our society
operates. Businesses are forced to adopt soffwraesses in order to stay productive
and competitive; and employees must have basic etanfraining and knowledge to be
marketable. Moreover, the internet is changingfthumdations upon which information
and services are exchanged.

As technology in the information age continues éwotutionize our world,
computers will become not only commonplace but alstbedded in everything around
us and our dependency on them will continue tangtteen. A separation of classes has
already begun and those that do not embrace thadgy will be left behind.

The intelligent agent is the one of the currentlieg paradigms, changing how
we interact with computer systems. As computevediriapplications and services are
becoming increasingly sophisticated, interface tgere developed to manage the
overwhelming complexity while presenting a simpl&uitive and often collaborative

interface. The assistive agent will carry out tadklegated to it on the user’s behalf.

www.manaraa.com

Embodied agents will handle the behavior of humamoibotics as they begin to be
placed in the home to assist the elderly and deskbith activities of everyday life.

The ongoing pursuit of intelligent agents that sancessfully operate in real life
circumstances must be accompanied by advancingdlaas at which the average human
can communicate with and utilize these agents.infeligent agents are absorbed into
everyday life, it is essential to make this humgerd interaction rich and complex but
yet natural and commonplace. This dissertatiomges on one promising interaction
paradigm, that of natural language.

Natural language understanding is in itself aneamrly complex subject, inspired
by linguistics, computer science, mathematics amyclwlogy. Therefore, this
dissertation further narrows its scope to that afest falls between language and
behavior; and the understanding as expressed Inknmwledge and reasoning inside an
intelligent agent. This will be further definedtime next chapter. The remaining sections
of this chapter will focus on conducted researcth #s importance and contribution to

knowledge.

Problem

Human language and communication technologies pl&gy role in enabling
humans to interact with agents in a natural andgitise way. Although many research
groups have great ambitions for human agent conuatian, there is a lack of complex
multi-modal language skills in implementation. @untly, most communicative agent
systems recognize specific keywords in incomingespehat then lead to the execution
of predefined actions and procedures. Some al@nrposing of constraints, beliefs or
planning; and others use multimodal interactionattow gestures and pointing to
accompany commands.

Research in task-oriented dialogue understandingnaodeling has produced a

plethora of models and ideas on how an intelligey@nt should understand, interact with,

www.manaraa.com

and incorporate communication from a human conversal participant. Examples of
such models allow for action and plan recognitigmpcedure learning, intention
recognition, collaborative planning, mixed initisi behavior, negotiation and more.
Even though a couple of these models have beendinted into domain-specific
research prototypes, the majority of them are basegither agent-agent communication,
or are simply theoretic in nature, based only onfew examples of dialogue.
Furthermore, these models have not been successftdgrated into a working human-
centered, intelligent agent implementation. Thss somewhat due to the lack of
implementation platforms as well as current deficies of speech-act and dialogue-act
recognition, which reflects upon the enormous caxigies of the human language.

The success of a dialogue management system is\dieptealmost entirely on
experience; where as in [34], experience is defaedhe history of previous mistakes
that one is not likely to make more than once. Wisalacking here is a clear
methodology and set of objective tools for the giesand development of dialogue
systems. By applying the engineering disciplineitdogue systems, a methodology and
toolset can be developed so that the lack of egpee is no longer a limiting factor.
Furthermore, this methodology will allow for the temsibility, interoperability and
maintenance of the dialogue system throughout thasgs of design, validation,
verification and testing.

The goal of this dissertation is not only to demats a common foundation that
unifies all dialogue models but also the constarciof a well-founded and manageable
yet extensible framework for conversational modglimside the behavior of an
intelligent agent. Certain fundamental questiond be addressed: How should an
intelligent agent incorporate communication? Hoeesl communication and behavior
integrate within an agent model? How can ideamfroany different dialogue models
and conversation examples be incorporated togethét@w can one validate the

correctness of an agent conversational model?

www.manaraa.com

Approach and Methodology

This dissertation represents the research behwvel@®ng a unifying architecture
for the representation and incorporation of commaton within the behavior of an
intelligent agent, providing a foundation on whitlany of the behavioral aspects can be
modeled and expanded. One of the keywords in boveasentence is unifying, not
universal. The very nature of behavior is not knde be universal, and thus there can
be no universal architecture. Therefore, this tsmbuis not a cure-all, but rather is an
approach to the development of engineering priesipls well as a proof of concept of a
single unifying language.

A theory of practical communication language, adl vas the integration of
communication and behavior has been outlined iptene. This chapter also provides a
strong and formal engineering methodology thatasted in the fields of protocol
engineering, as well as the mathematical foundatioh rational agency, logics and
speech-act theory. This theory is then followed dnapter 4 where the task
communication language is defined as a subset adtipal communication language.
This chapter is extended by appendix A with a phdpecification of the concepts and
operators that make up the task communication kagpgu

The developed methodology is followed in appendixoBproduce a working
conversational engine and an accompanying toolgath is embedded into a simple
intelligent agent. This agent is incorporated witBtratagus [55], a real-time strategy,
resource management simulation. An example sessitin a human participant is
provided in appendix C. Chapter 5 uses this ses$io demonstrate the many
conversational capabilities of the task communicatianguage as well as their
unification, thus providing evidence supporting tihesis. Chapter 6 follows with a
discussion of the implications of the thesis aslwasl its relation to various research

fields.

www.manaraa.com

The research in this dissertation focuses on howagamt understands and reacts
to speech acts and related concepts, rather than these acts are generated or
interpreted from text or speech. Thus, this dissien will not focus on any of the
linguistics aspects of the interpretation mechanisdowever, various insights will be

offered on possible approaches.

Contribution to Knowledge

Practical communication language based techniqguesrethodologies provide a
framework for the development of highly communieatiand collaborative intelligent
agents. These techniques enhance the capabditi@sture agents. TCL techniques
facilitate the development of complex dialogue nisd®cusing on how communication,
behavior and task conception interconnect. TClraggnts the elegant marriage of a
task-based design approach to agent behavior mgdatid a speech-act and dialogue-act
based approach to communication and interactioiges

The developed mechanisms not only illustrate hownroanication affects
reasoning and knowledge inside an agent; they &sch upon concepts such as
autonomy, user modeling and preferences, learaind,more. TCL also illustrates how
various agent-agent communication models can besfsamed into human-agent
models, thus allowing many known models to be réuaad unified. The TCL
vocabulary produces reusable classifications agdriéhms, which can be applied to a
number of dialogue systems.

The applied methodology extends on many interestiagcepts of protocol
engineering, such as partial specification, fapliérance, probabilistic sequencing, multi-
threaded sequencing, interrupt-ability, self-cairec models, adaptive models and
context-driven models. These extensions providealde insight into how protocol

engineering methodologies might incorporate theseepts.

www.manaraa.com

Results & Significance of Work

The successful integration of multiple dialogue eledusing meaning-action
concepts will further expand applications that usgural language processing. The
interface for meaning-action concepts will assisthie separation of language processing
and other communication types (i.e. gesture re¢imgmifrom the implementation of the
meanings of those utterances or gestures. This @akey role in the theory of the
separation between communication and behaviors 3¶tion reduces the cohesion
between dialogue interpreters and intelligent ageihius allowing separate, yet parallel
development of each. This separation provides doth interoperability, and a
development process far above current techniqudsinging communication-enabled
intelligent agents to market.

The application of the engineering methodologiegettpped an assistive agent
with advanced behavior management and control, e as other sophisticated
communicative capabilities, through an intuitive Man-machine interface. This
demonstrates an agent that drastically improvesptiogluctivity and capabilities of
novice users when interacting with computer systantsapplications, as well as a proof-
of-concept for improving upon the current featuddsintelligent agents and assistive

robotics.

www.manaraa.com

CHAPTER 2
BACKGROUND

Philosophy has been one of the major influencesrtifficial intelligence since its
birth. Just as geometry, in which two points makae, and three points make a plane;
this chapter will begin by introducing several pkbphical concepts that form a
foundation of a particular research area. As tlaswepts are expanded upon, both
historical context and technical details will conie to bring this research area into
understanding. This chapter represents all thekgsauand material necessary to
understand the research presented in this digsertat

Following geometry, two philosophical concepts dan used to make a line.
Even though this line need not be straight, asethosncepts may not be readily
connectable, that line can be turned into a spectrihis chapter defines a spectrum that
will help to organize and connect all of the matkcovered in this, as well as subsequent

chapters.

The Communication — Behavior Spectrum

The communication-behavior spectrum begins with wemcepts. The first
concept was introduced by John Austin in 1962, winemvrote a book callddow to Do
Things With Words This book had a simple idea thatterances or atomic
communicative phrases, not only carry meaning, dab perform an action. The
investigation of this idea led to the developmemd subsequent categorization of the
speech-act This concept creates a specific point within tlaéion of communication.
The next section will start with this point andléol it toward the notion of behavior.
However, before the area of communication is exgaloit is important to get a good idea
of the destination.

The second concept is the notion of agency. Thedaoction of theagent
paradigmhas had a lasting impact on various areas withifical intelligence, ranging

from complex software systems to societies of igiht beings. There are thousands of

www.manaraa.com

definitions for the term agent; both formal, asmuped by rich semantics and logics, to
informal, as found in fields from sociology to wadlization. One important aspect of
agency is its ability to encapsulate the behavi@moentity. It is used in many aspects of
behavior modeling, as well as the primary paradigrambody software-based behavior.
A section on agency will not only define the notmfrbehavior using an intelligent agent,
but will also pick up the section on communicatifurther connecting the notions of
communication and behavior. Then a section ontagamd communication will further
expand the marriage of communication and behaworiscussing how agents use
communication in and among themselves, as well &8 Wwuman conversational
participants.

Two critically important aspects create the digtorc between a spectrum and a
simple line. The first aspect defines the spectiusuch a way as to place the human on
the communication end and the agent on the behasimat. This is because
communication is the primary point of contact bedwe human and an agent. Although
this is not necessarily true, as the agent carthesebservation of human behavior as a
point of contact, it is the role of this dissematito focus on communication.

The second aspect of the spectrum builds uponirdte fThe human uses natural
language to communicate. A language that is nigt@rerwhelmingly complex, but also
constantly fluctuating. On the other side, thenage situated within a computer system,
an environment that is precisely defined in mathesausing semantics and logics.
Therefore, because abstraction is a key tool irpldiication, it is used throughout the
spectrum to take uncertainty to certainty, or inpoghensible to rational. A section on
empiricism and rationalism further expands the wstdeding of this aspect of the
spectrum by describing various scientific views anethodologies associated with the
perspectives from each side.

The last section concludes the chapter by providingverview of the field of

protocol engineering. It describes various tomledels and methodologies pertaining to

www.manaraa.com

the design, specification, verification and testiofy communication protocols. The
theory presented in this section will provide aessary background to the understanding
of the developed framework and methodology appleedhe communication-behavior

spectrum.

Communication: Language Theory

This section will highlight some of the importamincepts of the language theory
foundation of this research. The purpose of tlstisn is to understand how the

meaning-action concept comes from and fits withia theory.

Speech Acts
Speech act theory was attributed to Austin [5] wienwrote a book on the
premise that when a person says a particular statierthat statement has an impact on
the speaker or the hearer and thus changes or ntaeip the environment in which the
speaker is situated. Therefore, the speaker 8 tblcarry out an action by merely
speaking a particular utterance or sequence ofamites. What followed was a great
number of taxonomies of speech-acts and their oatEgion as well as the linguistic
analysis of many corpuses to inquire about theueaqy and probability of speech acts.
Speech acts have been used to recognize a parteutlaor over another, categorize
email, recognize spam and filter web pages as agkhttempt to detect one’s identify,
ethnicity and cultural background.
Speech act taxonomies have three top-level cagsgori
» Locutionary actsin which the utterance has particular meaning.
* lllocutionary acts in which the speaker is committing, asking almmanswering.
* Perlocutionary actsin which the speaker intends to cause feelingbarghts.
Generally, the study of speech acts with respegtractical language and agents
has focused on illocutionary acts only. In fantthose particular fields, the term speech

act has been somewhat distorted to encapsulateliociytionary acts.

www.manaraa.com

10

One such categorization of illocutionary acts Usescore groups [50]:
* Assertives commit the speaker to a belief (progpsioncluding.)
» Directives attempt to provoke action in an addregssking, inviting.)
* Commissives commit the speaker to future eveng(phg, promising.)
* Expressives demonstrate psychological state apgraker (apologizing.)
» Declarations bring about a change in the worldlétation.)
Conversation Acts [56] augment traditional speetts aith acts associated with

turn taking, grounding and argumentation.

Dialogue Modeling

Dialogue modeling [20] is an attempt to understs@guences of utterances rather
than individual utterances themselves. This ptigdi to the creation of dialogue acts
and discourse structure. The general procesgdating a dialogue model is as follows:

1. Conversation is generated or recorded and becomapas.

2. Special discourse tags are generated and useddtasa the corpus.

3. A model is built which operates on the generatgd.ta

4. The original conversation is applied to validate demonstrate the model.

The majority of dialogue models are created in theattempting to account for
real-world problems and situations in an attempiriderstand conversation. Only a few
of these dialogue models are integrated into antagglementation.

There are also generally two types of models: gtrotodels, which are built
through the process above; and weak models, whiehbailt by applying dialogue
sequences, often only made up simple exampleshvirigak a given strong model and

then extend that model to account for the exploinedkness.

Dialogue Acts
Research in building dialogue models has createltipteafunction acts that are

more complex than speech acts. These acts argeckféo as dialogue acts [20].

www.manaraa.com

11

Dialogue acts not only replicate the illocutiongmywer of speech-acts but also provide
conditions on how they connect with one another,omy to specify constraints, but also
to develop structure within a dialogue.

Many dialogue tag sets are used in current resdanalm speech understanding
systems to the generation of agent communicatioguages. These tag sets all attempt
to describe the semantics of various utterancea mhalogue between two or more
participants. The semantics are justified by traghhe utterances connected together to
make up segment of a discourse. Models are assdcwaith these sets in order to

describe the process of conversing in a dialogue.

Creating Dialogue Tags

Early dialogue tag sets were created by an attéonppmmon sense the English
language into obvious tags. The trouble with #pproach is that there are thousands of
tags, many of which are used only in very speafises. Today, dialogue tag sets are
generally constructed to focus on a particular tgpaliscourse most applicable to a
specific purpose. These tag sets are createdddyzamg corpuses specifically pertaining
to a domain. It is often the case that these c@pwvill be collected through wizard-of-
0z scenarios with users from a particular focusigro

The wizard-of-oz approach is to place an unseen human operatondehi
figurative curtain. The human operator takes tlaegof a piece of software needed for
the application to operate. A user interacts wiils system thinking the system is
working entirely on its own. The goal is to use timteraction context to model a
computer system that will replace the human operato

Dialogue tags are generally created by linguidiicalined personnel that know
about the application and what it is supposed toldmrder to understand these dialogue

tag sets, some of the most widely used sets will be discussed. They are presented in

www.manaraa.com

12

an order that is not necessarily chronological, dmuthat each discussion may build off

the previous.

LINLIN

LINLIN [22] is composed of three main types of u#tleces as seen in table 1.
Initiatives begin a segment of conversation; respsrfinish a segment of conversation;
in discourse management, the speaker performs csatianal overhead.

Although extremely simple, this dialogue tag setady begins to form basic
structures within a discourse. For example, updatssert knowledge; answers must
follow questions. However, this tag set is onlypalale of modeling the most basic

properties of simple discourse.

Table 1: LINLIN Dialogue Tag Set

e Initiative
0 Update
0 Question
* Response
0 Answer
» Discourse Management
o Greeting
o Farewell
o Discourse Continuation

HCRC
Although HCRC [13] does not have the separate diseooverhead type of
LINLIN, it still has the fundamental types of irting and concluding a segment of

discourse. HCRC is unique in that it treats this as a set alialogue movesvhere the

www.manaraa.com

13

conversation is likened to that of a game wheré speaker is a player that is allowed to
make certain moves during their turn at speaking.

The rules of this game are strict but simple. &mmple, a Query-yn, to ask a
yes or no question, must be followed by a Replyganing yes, or a Reply-n, meaning
no. The Query-w refers to a ‘who, what, when, wehevhy’ type question and should be
responded with Reply-w. HCRC also demonstrategutiker breakup of the tags found

in LINLIN. Question is now two subtypes, and resge is now three.

Table 2: HCRC Dialogue Tag Set

» Initiating Moves
0 Instruct
Explain
Check
Align
Query-yn
o Query-w
* Response Moves
o Acknowledge
Reply-y
Reply-n
Reply-w
Clarify
Ready

O O O o

O O O O ©o

DAMSL

DAMSL [21] is an acronym for dialogue act markupsieveral layers. It begins
to show the possible complexity of dialogue tag st seen in table 3. A hierarchy is
used to break the acts down into more than oner laferoups, as is necessary to

maintain order as the number of dialogue acts ooatto expand.

www.manaraa.com

Table 3: DAMSL Dialogue Tag Set

14

* Forward Looking Function

o0 Statement
= Assert
= Reassert
= Other-Statement

o Influencing Addressee Future Action
= Action-Directive
= Open-option
» Info-Request
= Committing Speaker Future

= Action

= Offer

= Commit
o Conventional

= Opening

= Closing

= Explicit-performative
= Exclamation
= Other Forward Function
» Backward Looking Function
0 Agreement

= Accept

= Accept-Part
= Maybe

*» Reject-Part
* Reject

= Hold

o0 Understanding
» Signal-Non-Understanding
= Signal-Understanding
= Acknowledge
* Repeat-Rephrase
= Completion
= Correct-Misspeaking
0 Answer
0 Information-Relation

www.manharaa.com

15

In DAMSL, we still have the same basic principldésmnitiating and concluding a
segment, but we extend much further beyond questasrd answering to notions of
proposals and commitment, as well as the acceptanigection of pieces of utterances
as opposed to entire utterances. DAMSL is capabl®modeling much more complex

discourses and in further detail than previousstg.

TRAINS

Table 4: TRAINS Dialogue Tag Set

e Core speech acts
o Inform
YNQ
WHQ
Request
Suggest
Offer
Promise
Eval
Accept
o0 Reject
* Grounding acts
o Initiate
Continue
Acknowledge
Repair
ReqgRepair
RegAck
o Cancel
* Turn-taking acts
0 Take-turn
0 Keep-turn
0 Release-turn
0 Assign-turn

O O O 0O oo oo

O O O O ©o

www.manaraa.com

16

The valuable contribution of the TRAINS dialogug et [58], as seen in table 4,
is the incorporation of the notions of groundingsa&nd turn taking. In grounding acts,
participants of the conversation attempt to reachwual understanding within the
discourse; thus accounting for sub-dialogues sisca darification. In turn-taking acts,
participants either keep or release their turnpaaking. This accounted for one of the
first examples of a mixed-initiative dialogue, irhieh either participant can initiate

utterances.

Dialogue Structure

All of the discourse tag sets above were creatdd am accompanying model.
These models employ particular dialogue structwtegther it is based in protocols and
sequences, such as the dialogue games of HCRCisdrased on the understanding and
interpretation of dialogue, as with TRAINS. Theusture implies how individual
utterances or segments are interconnected.

Countless researchers have analyzed discourseusgun a wide variety of
domains. These have influenced many specialty teddam negotiation to skepticism,
founded agent communication languages and dialogagoretation systems. It is well
beyond the scope of this dissertation to providg @mprehensive background in this
area. However, an extremely influential investigatof the structure of task-oriented
discourse will be briefly presented.

Task-oriented discourse accounts for the dialogegaming to at least two
participants. These participants focus only aroanset of tasks, cooperating under a
mutual objective. The majority of this type of chsirse follows a unique layered
structure in which individual segments are nestethiw one another. Almost all
discourses have this type of layering property, énmv, it was the notion that each layer
is associated with a particular purpose (task,ativje, clarification, etc.).that helped to

tie understanding components to the model [32].

www.manaraa.com

17

According to the theory of discourse of [33], discse structure is composed of
three core components. The linguistic structurdpsheéo explain how segments,
sequences of utterances, occur naturally. Thatioteal structure captures purposes on
the discourse level, expressed in the segmentslfaithin the linguistic structure. The
attentional state abstracts the focus of attenfimeiuding what crosses the attention of
the participants such as objects, properties datioes. These core components will be

later addressed when several dialogue managernmepl@tions are examined.

Meaning-Action Concepts

It is essential to separate the recognition anerpnétation of communication as
well as the discourse management from the behdvasgects of an agent. Currently
discourse managers perform this role, and dial@ypie-are used. However, the number
of practical dialogue-acts is exploding.

A meaning action concept is the semantic and pragmeeaning of utterances in
a language-independent idiom free representatiased on the theory of speech and
dialogue acts. A given utterance is translatablecty into a single or a set of meaning
action concepts. However, unlike dialogue-actsamrgy action concepts can also relate
directly to behavioral changes and actions to kertavithin the system. Meaning action
concepts are also associated with a signature,hwdmsists in this endeavor, and they
have the ability to be nested within one anothker.addition, meaning action concepts
also correlate directly to notions of shared intdocen models, as will be explained later.
In order to understand the notion behind a meaaatign concept, an examination of the
following utterances is provided.

‘I want to go on a vacation.” In LINLIN, this wadilbe modeled simply as an
update. In DAMSL, it would be considered a stateinte perhaps even an exclamation
and in TRAINS, it would be considered an informhelcritical aspect of this statement is

that it conveys one of the speaker’s desires. iayg still be modeled as an inform of a

www.manaraa.com

18

desire, but the meaning action concept will bedlliyeied and associated with the desire,
rather than the general statement.

“Let's plan a trip to Germany.” In LINLIN, this wdd be an update and in
DAMSL a statement. TRAINS is more aligned with thee nature of the statement by
modeling it as a suggestion. However, the meaaatgpn concept will not only pick up
the fact that the speaker is proposing some jaitivity, but also that the activity is to
generate a plan.

“What are you thinking?!?” As before, LINLIN woulske this as an update and
DAMSL a statement or perhaps an exclamation. TRAMNay see this as an inform.
However, the true meaning behind this utterancéhés assertion that the speaker is
displeased with the choice or behavior of the ofherticipant. The meaning action
concept will model this as a scolding, which représ negative reinforcement learning,
associated with displeased action on the partiCipaart.

Some dialogue managers, which will be discusseer,laperform plan
interpretation in an effort to understand why thitenance was stated, rather than the
meaning of the utterance itself. This would yi@hderpretations, such as desires or
reinforcement that were given above. However, dlided information is trapped within
the dialogue manager and its use of a specific ARher than provided within a
message-based medium. The introduction of meaaatign concepts to include this
added information is essential to the engineeriaged approach to formal modeling

techniques.

Synopsis - Communication Perspective
The goal of this section was to present the backgtdheories of communication
necessary for an understanding of this dissertatibime path started with the incredible

complexity of natural language, and provided aesedf abstractions in order to bring

www.manaraa.com

19

language closer to rationality. Concepts weregres that will later tie communicative
aspects to behavioral counterparts.

The section began by presenting the idea of thecépact behind an utterance.
The speech-act turned the utterance into an aa#rying with it an illocutionary force.
The illocutionary force implies various ways in whian utterance could be used or
interpreted. Dialogue tag sets then explored heguences of utterances might be
interrelated, as well as a brief look into somdatjae structures including the structure
of task-oriented dialogue. Finally, the idea ofami@g action concepts was presented as
a means for stating more expressively not onlyillbeutionary force of, but also the

meaning inside an utterance.

Behavior: The Theory of Agency

Agency has been extremely successful in a numbareafs and is one of the most
widely popularized concepts of artificial intelligge. Because of both its simplicity and
widespread use, the agent can be used as a unhiparadigm, able to incorporate ideas
from many interesting and unique research areas.

This section attempts to provide a necessary baakgrin the various aspects of
agency as it relates to the dissertation. Thaaeutill begin with several definitions of
what an agent is, and then provide some of the itapbtypes and properties of an agent
in relation to this research. Then, related agésntdards and well-known architectures

will be discussed.

The Agent Paradigm
An agent is a term used to conceptualize the bayrafaa particular entity, often
referring to a software or control system. Onethed more popular definitions [47]
defines an agent as anything tpatceivesan environmenthroughsensorsandactson

that environment througactuators This definition, although somewhat wide in scope

www.manaraa.com

20

is shared by all agents. All agents should havons of percepts and actions. The
agent paradigm is illustrated in figure 1.

The internal perspectiveof an agent defines how its precepts are mappets to
actions, and what internal components are usedhig ¢onnection. Theexternal
perspectivedefines the various outward properties of an agenlemonstrated by their
sensors and actuators.

From a software engineering standpoint, an agemt lsa considered an
encapsulation mechanism much like object orientedggamming. The agent
encapsulates all of its state information, intemalchanisms for learning and reasoning,
and threads of control. The cohesion between gleateand its environment are reduced
to that of sensors and effectors, and the agent deenonstrates its behavior within the

environment.

~
PERCEPTS SENSORS

AGENT ENVIRONMENT
ACTIONS ACTUATORS

Figure 1: The Agent Paradigm

www.manaraa.com

21

Agent Embodiment

The agent paradigm as illustrated in figure 1 shawagent that is separated from
its environment. However, most often but not alsyathe agent will be a part of its
environment, and the environment will react toitjnteract with it accordingly.

In order for an agent to exist, it must iecuatedin some form of environment,
whether physically or through indirect encapsulatid’he exact placement of its sensors
and actuators define the boundaries of the agehtnits environment. Often the term
embodied agenwill refer to an agent that completely fills a pemlar system or device,
most often physical. This means that the boundeefgent are the same bounds as the
entity that it embodies.

For example, if the agent is to be embodied insideumanoid robot, then the
eyes, location and acoustic sensors would feed@@gent’s percepts, and the actuators
would feed directly to the motors, speaker and maation devices of the robot. Since
the robot is situated within the robot’'s environmehen the agent would then also be
situated within the robot’s environment. The intpace of an embodied agent is that
when embodied in an entity, the agent can psyclcdtyg believe that it is the entity,
rather than the software inside of it. Likewides human consciousness can believe that
it is the entire human body, rather than somettinag may or may not exist within the
brain. This belief is not only held by the agdmif how the environment perceives the
agent, as the environment will often perceive ittbg entity that it embodies. In the
above example, the environment will perceive theendgas a humanoid robot.
Unfortunately, the term, embodied agent has beemeahat restricted to refer only to

agents that are placed into a personified entity.

www.manaraa.com

22

Types and classifications of Agents

Agents span out into thousands of classificatidrased particularly on either
what environment they are situated within, whatperties or capabilities they include,
what purpose they serve or how their internal stmgcmaps percepts to actions.

An agent may fit within multiple classifications dypes. For example, a
thermostat device would fit into the reactive ageassification, in which the percepts,
temperature gauge, are directly mapped to actibeat or cool. It would also fit a
mechanical agent classification, in which its magpiare entirely mechanical. Several
agent classifications relative to the researchct@e defined below along with their

association to the agent developed throughoutlibgertation.

Intelligent Agent

An intelligent agentis an agent that demonstrates intelligent behavidhe
definition is somewhat vague and circular, as iinigedibly difficult to define. Often
intelligent agents will have a history with whichdan analyze all past percepts and
actions it has experienced. In addition, it wilbsh likely have a complex behavior
structure allowing it to reason and have notionknaiwledge.

Sometimes, intelligent behavior can be derived lygmmming a very simple
agent with specific rules that make it appear ligeht within a specific environment;
however, this definition often proves a trap whiea ¢nvironment is slightly modified, or
a conflict in the provided rules break down theelligent facade. Therefore, this
dissertation will focus on endowing an agent wigkafic powerful constructs to build its

intelligence rather than designing a simple ingelfit appearance.

Conversational Agent

A conversational agenis an agent endowed with the necessary language
capabilities to allow it to hold a conversation lwita conversational partner.

Conversational agents range from the simple chiatsgstems such as [61] to more

www.manaraa.com

23

sophisticated question answering agents for infionaretrieval or agent-assisted user
planning [8].

The agent implementation built in this dissertatisncapable of carrying out
sophisticated conversations with humans over camptanmand and control and the

management of resources in real-time situations.

Interface Agent

The interface agenis situated between an interface and another raysighich
may be a human, an agent or something else. Suabemt will translate the information
or requests from one entity to another, in an efimmake the communication between
entities more successful.

The agent implementation built in this dissertatisn situated between the
Stratagus gaming interface and the player. Rabi@r the player directly controlling the
resources in the game, the interface agent cortnels on behalf of the player. This

drastically changes the interface paradigm thegsles/using to play the game.

Assistive Agent

The assistive agents one that is designed to assist its user wittiopming
actions. The goal of the assistive agent is toarthk user’s actions more productive by
understanding the user’s desires and performimgueh work as possible to alleviate the
task load of the user. This sometimes elevatesgbeto the role of manager or director,
often just telling the assistive agent goals oirdesvhich are then carried out.

The agent implementation built in this dissertatisran assistive agent in that it
performs much of the low-level tasks in Stratagimaang the user to focus more on the
high-level tasks of the game. The user directsatient by specifying high-level goals
and sometimes provides low-level details in howalkgectives should be carried out.
When there is any kind of conflict in the low-lewdtails that the agent cannot solve or is

not allowed to solve autonomously, then the usdrivei addressed at a higher level to

www.manaraa.com

24

help resolve the conflict. In the sense of Strasaghe agent micro-manages the
resources and objects within the game while thgeplarchestrates top-level strategies

and objectives.

Social Agents

There has been much research into making agents raalistic and life-like, in
order to help their acceptance into society. Theye been often endowed with scripted
personalities and given expressive qualities, wihiehelop their personification. Many
assistive agents have been given these features,asu[44], in order to facilitate their
integration into the workplace and their acceptar@ee particular researcher did a study
on programming computer systems to show signs stfedis and lack of confidence
noting that their users often felt compassionat® rated the program with better scores
than in normal operation.

The dissertation focuses on social constraintsaligations to help define the
behavior an agent should or should not take whiemanting with the user. For example,
if the user asks a question, the agent is obligadgorovide a response. The response
may not be an answer, but should address the Hatttlte question was asked. These
simple social conventions help conversations tongoe smoothly and thus are critical to

the adoption of communicative agents.

Agent Standards
As with many scientific and engineering communitii®e agent community
provides many standards and standards organizatioB®ndards are an important
concept in developing engineering methods as veeha adoption of those methods into
practice. Of the many standards of artificial iijence and intelligent agents, a few

have been selected and are described below.

www.manaraa.com

25

FIPA: Foundations for Intelligent Physical Agents

FIPA [27] is a non-profit organization whose pur@as to develop and produce
sets of standards for the interoperation of sofwagents. Their specifications fall
roughly into five categories. 1) Applications demtrate the integration of agents and
their standards. 2) Abstract Architecture discsigbe architecture of agents. 3) Agent
Communication groups the interaction protocols, iamicative acts and content
languages. 4) Agent Management includes agenbksg systems. 5) Agent Message
Transport discusses the Agent Communication Languag-L) [28] standard among
others.

These groups of standards provide all the necessalging blocks to construct
fully complaint intelligent agents as well as theiner components, frameworks and
toolsets. Agent communication and agent commuicdanguage will be discussed in

more detail in the next section, which focuses @enés and communication.

OAA: Open Agent Architecture

The open agent architecture [45] is focused onticiga system where agents,
when conforming to OOA standards, can use theagtt communication language to
register services it can provide, or find servioésther agents. Users of CORBA may
be familiar with the basic concepts. OAA is simi®@ many of the web service
description and discovery services and can be wgbdhe semantic web.

Although an important standard, it does not digectintribute to the dissertation
research, other than providing an idea on whiclerodommunication services may be
built. The dissertation focuses on human-agentnconication; however, the theory of
practical communication of the next chapter is alsoitable to agent-agent

communication and thus the OAA standards may bécaybe.

www.manaraa.com

26

DARPA Communicator

The DARPA Communicator, now under the galaxy comicator [29], was a
project designed to integrate many speech and &geygomponents into an integrated
system. This included such components as speeehnpiatation and generation,
utterance parsing, and dialogue management. Téleofjthe project was to allow for the
creation of spoken language interfaces utilizingotes components of the system. It is
now used as a possible architecture for the cortgtruof dialogue systems and is found
to be a rival of OAA in that purpose.

This dissertation describes an agent implementaticeppendix B. This agent
utilizes the galaxy communicator to separate threpmments of the system. This allows
various compatible speech-processing componeriis tsed and their interaction can be

logged for both debugging and gathering empirieaad

Agent Architectures
There is a vast array of agent architecture styl@fhiese range from simple
reactive systems to systems that incorporate atlkiof design patterns. However, the
belief desire intention (BDI) architecture stand®we the rest, due to its uniqueness,

understandability and widespread adoption.

Belief Desire Intention

The belief desire intentior{BDI) architecture [30] consists of a model ofeér
specific components, which interact with each athBnis model is founded in cognitive
and psychological theory, and is one of the magading models of an intelligent agent.

Beliefsrepresent knowledge the agent holds to be trumytadioth itself, and the
environment. They are developed from the agerdisgpts and previous experience, as
well as domain principles provided to it. Althougbme claim that beliefs not only hold
facts but also hold rules, beliefs in the BDI aretiure are generally based on

prepositions. Beliefs are located within the atpekmowledge. If they are present, then

www.manaraa.com

27

the agent holds them to be true. If the negatadrtiem are present, then the agent holds
them to be false. If they are not present in eitbem, then the agent simply does not
know. Reasoning may update the agent's knowledgedtl, negate or remove various
propositions of belief.

Desires represent the agent's goals and objectives that nandifiable and
selectable. They are developed through reasonreg leeliefs. The agent will reason
about its beliefs and create a number of possibleses of action based on its overall
purpose. In task-oriented BDI architecture, desieflect these courses of action.

Intentionsrepresent the current desires that the agentespting to accomplish.
While desire is often high-level, the intentiorof$en lower, such as an instantiated plan
that ends in the desire being achieved or mairdainatentions reflect which desire or
set of desires is currently being pursued. Gelyerdie agent will deliberate on all
possible desires and select a single one to puasigethen generate the plan to fulfill that
desire.

If an agent constantly switches intentions basedvhith desire it is pursuing,
then it is viewed to be flakey or scattered. # #dgent does not adopt a new desire except
when the intention it is pursuing is found incagalbthen the agent is viewed to be super-
focused or stubborn.

The overall BDI cycle is as follows. An agent mems actions that change the
environment. Changes in the environment are reftea the agent’s percepts, which
cause changes in its beliefs. These changes iefbé¢hen may cause changes in the
desires of the agent, which may or may not chatgententions, such as making it
unachievable or not worth achieving. When the agenlonger wants to pursue its
intended plan of action, or comes with a betten & action based on desires, it will
generate new intentions. The intentions will disetead to the execution of actions and

thus the cycle will continue.

www.manaraa.com

28

The BDI architecture is extremely popular with tigtion of rational agency, or
agents that are extremely specified by semantidsi@gic. Many agent-agent dialogue
models have been built using rational agency and thcorporate ideas of BDI within
their conversational models. Therefore, an undadshg of BDI will enable the

understanding of many of these models.

Adjustable Autonomy

One important aspect of an intelligent agent isatgonomy. An agent is
autonomous if it can act on its own under its owpegience. An important concept for
assistive agents is the concept of adjustable aotgnn which the human can control the
depth of the autonomy of an agent. A typical agamt act on behalf of a user making
decisions as is required. However, there may bertain decision that the agent has to
ask the user to make, or perhaps a constraintgbetasks the user for permission to
override.

Many users will want little autonomy in the agerdncerning choices with
important consequences such as spending moneykangneommitments; but users will
want the agent to have more autonomy when perfgnss important tasks, thus

reducing the amount of bother the user will haviate.

Synopsis - Agency Perspective
The goal of this section was to present the backgtdheory of agency necessary
for an understanding of this dissertation. Thehsarted with the agent paradigm, and
provided further detail about the models, propsrtiad classifications. Standards were
briefly mentioned and the BDI architecture was désd.
The BDI architecture represents a starting behalionotion in the
communication-behavior spectrum. The various ageoperties outlined, and their

discussed relevancy helps to define the goal efdigsertation; not only the engineering

www.manaraa.com

29

methodology for conversational modeling inside raelligent agent, but also the essence

of what the resultant agent is to become.

Agents and Communication

This section continues both the notions of agennog aommunication by
providing the background material pertaining tarti@egration. The section will begin
with communication among agents. It will discuee broad transport level between
agents, and then narrow down to the specifics @t they are conversing. The section
will then provide a path through human-agent comgation. This path will start with
extremely rational communication in which the hunmseverely limited on expression,
and move the agent into uncertainty by allowing llienan more and more expressive
power, and incorporating more and more modelingriegies. This section will finish

with a discussion over the current language-based\ioral development techniques.

Communication among Agents

Agent-agent communication has come a long way fpooprietary messages or
protocols to many open-standards for interopetsbili One of the most important
developments of agent communication is the brealupommunication into multiple
layers.

Agent Communication Languagesre high-level languages based on the
primitives of speech-acts, and utilize structure edxpress negotiation, information
exchange, collaboration and more, that are requioednter-agent interaction. The
primitives of speech-acts reflect the illocutionahgory in which the agent desires to
perform an action on or with another agent or grofi@gents, and thus generates a
message.

The term ‘agent communication language’ (ACL) hasdme polluted to mean
any communication between agents rather than atspegific level. Therefore, this

section will introduce two additional terms to makelistinction. ACL transport layer

www.manaraa.com

30

reflects the message exchange between agents, tladinethe contents of each message,
and ACL conversational modelingill reflect the contents of each message andeatgl
how they are exchanged. The ACL transport lay#ects the ability of humans to form,
speak and hear utterances. ACL conversational ingdeflects the ability of humans
to interpret utterances and understand one anothérhe further layering of
communication itself will be discussed later whememunication is related to protocol

theory.

ACL Transport Layers

Languages classified in the ACL transport layer asta transmission and
receiving mechanism or underlying protocol of thehange of messages between
interacting agents. The protocol generally handtaasmitting a message to another
agent or broadcasting a message to a group of sageAll messages are generally
associated with an identifier, and contain headersmeta-data, that associates the
message with an identifier acknowledging a reptyidentifier for future replies, as well
as an intended receiver and the originator of tkesage. Some messages also include
not only the language of the message contentslbatinclude the ontology the message
content uses. The two major agent communicatinguages in the transport layer are
FIPA-ACL, or the agent communication language, AGLthe foundation for intelligent
physical agents, FIPA, and KQML, the knowledge guand manipulation language.
Both of these also provide accompanying agent-framnes in which one can create,
name and organize multiple intelligent agents, aiwv them to discover each other and
communicate as a society.

Because the ACL transport layer reflects on thesags overhead, it is separated
entirely from the behavior of an intelligent agentherefore, no more detail will be

provided because it does not directly influence ¢benmunication-behavior spectrum.

www.manaraa.com

31

However, the transport layer developed for TCLs@sn in chapter 4, is based in part on

these transport layers.

ACL Conversational Modeling

Several researchers were unsatisfied with the levetletail found in agent
communication languages, such as FIPA-ACL and KQB&AL yell as the various speech-
act taxonomies and dialogue understanding modeldaéle. They were rationalists and
needed a more formal specification of what eacledp@ct meant in terms of agents and
their behaviors. This was both to reduce the amtyigpresented in the mere name alone
and to help formalize a standard to lead to a ndeterministic interoperability. While
this work was still an agent communication langyagech detail was also given to the
entire conversation, not only the messages beisgggk but the state of the participants
as well. Therefore, this dissertation refers tehsianguages as ACL conversational
modeling. In the case of restricting which messagey follow other messages, the
model is referred to as an ACL communication proktocThese conversational models
typically deal less with the discovery and transpmr messages and more with their
meaning as pertaining to agent knowledge and r@agon

One of the major contributors to the rationalizatmf speech-acts was lead by
Cohen and his colleagues. A widely used formabmabf standard speech-acts can be
found in [54] and formal semantics of KQML based jomt intention theory can be
found in [17]. In order to understand the ratiGestion and specifications, the next
paragraph looks at the specifications in relatmteamwork.

In [18] a communicative act for the attempt to agkia goal is defined as below.

(ATTxepq)=<>=(BELx-p)& (GOALX(HAPPENSe; p?))& (INT xe q?)

This actATT includes which agent is attempting the ®mcthe act the agent will
attempt to perforng, the goal the agent hopes to accomppsand the result that the

agent has committed to performigg Not only has the act itself been defined, buatwh

www.manaraa.com

32

means semantically has also been strictly defirsttording to their theory, if the agent
communicates this act, it means that the agémiievesBEL that the goap has not been
accomplished. Furthermore this agestates that it has the g@aDAL that it will take a
course of actioe towards the gog and that it has the intentidNT to perform an action
eto at least bring abogt

In this manner, rational agency can be derived uidfinothe composition of
elements of the underlying theory, or in this casmls, beliefs and intentions. This idea
of using composition of elements and treating asags as a set of underlying or implied
elements is an important idea into the subsequema\bor changes a message can bring
as well as insight into why a message may have bre@smitted. This is critically
important in conversations between or among agesdgpgecially when considering
conversational policies and obligations, definingpgerties like expected behavior.
However, because of the flexibility of the natlealguage, these semantics should not be
so concretely defined, although they should indezdell described.

ACL conversational models are generally well formedfirst-order logic and
transmitted through KQML or FIPA-ACL to the othegemts who can understand the
components that make up the message. In genevdklsof this type are proof-theoretic
and are built up through logical reasoning withesgheacts as a design guide.

It is clear that with the level of detail in thesges of models, if they can be
incorporated into human-agent communication, thgesyof conversations and the
understanding power of both participants will beeadly improved over the current
dialogue managers. For example, [53] defines bethantics and conversational policies
for the concept of a standing offer and its subsatjacceptance or rejection, including
the commitments on behalf of the participants. @se such a model is both inspired by
human-human communication and founded in agenttag@nmunication, they should

be applicable to human-agent communication.

www.manaraa.com

33

ACL Specification and Notational Schemes

A variety of notational schemes has been developearder to represent and
describe various agent communication languagegsotdcols. This section will briefly
review the specifications because they apply direict engineering methodologies of
agents and societies of multiple agents.

The majority of these specifications provide onlpaational framework for the
description of various agent properties. Protoeots often abstracted into just simple
message exchanges. The testing and verificatiaghadelogy to accompany these tools
is somewhat lacking, however the specifications viol® integration between

communication and the behavior modeling of the agen

UML

UML, or the unified markup language, attempts to the graphical design
representation for all of software engineering9][@emonstrates how unmodified UML
can be used to represent agent communication lgegua Specifically, the author
incorporates activity diagrams, macros and swinedanlt is their contention that by
using unmodified UML, the concepts of intelligergeats and communication can be
understood by the wide range of computer scienéiats software engineers capable of
understanding UML. In addition, existing toolsttisan fully model UML can be utilized
without modification. Although noble, the addedngmexity of the structure that is
required may not be worth the trade off of standar&imple modification can yield a

more elegant specification.

AUML

Agent UML [4] is an initiative by the foundationrfantelligent physical agents.
Its goal is to be the all-encompassing agent-ceatrgoftware representational and
notational language. AUML uses UML sequence diagrdo express the interaction

between agents and agent interaction protocoldik&Jthe others listed here, AUML is

www.manaraa.com

34

extremely complex and defines specific standardstii@ protocol frame, lifelines,
messages, constraints, timing constraints, smittend merging paths, protocol
interactions, interaction termination, protocol donation, actions and protocol
templates. Although young, AUML has the potential become a practical agent

standard, especially when backed by FIPA.

Agent Communication Specifications in Practice

There gives a plethora of specifications and metlugies for developing agents
and societies of multiple agents. In incorporatagent-interaction protocols, Tropos
[43] uses UML while PASSI [14] and Prometheus [46¢ AUML. Traditionally those
that use UML leverage user interaction diagramdenthiose that use AUML prefer using
sequence diagrams. Others such as GAIA [63] atisp@tocols down to purpose,
initiator, responder, inputs, outputs and procegsand do not specify the underlying
protocol itself. Other systems simply abstractititeraction into the act of exchanging a
message and do not specify it further.

BRIC [26] is the block-like representation of irdetive components. It consists
of a high-level language for a modular approacitidti-agent systems. Components are
based on UML style syntax and the interaction asdraunication between components

are modeled as Petri Nets.

Discourse Conventions
A conversationis nothing more than a sequence of exchanged gessanong
interacting participants. However, in order forneersations to be coherent and
meaningful, agents should follow commonly knowrerulimiting the types of utterances
that can be asserted at any point in the conversatiFollowing such rules is often
referred to as adherencediscourse conventions
A simple example of a discourse convention is ansgea question. If one

participant asks a question to a second participiuet second participant is socially

www.manaraa.com

35

obligated to address the question, even if it edu® is unable to answer. To account for
this phenomenon, the notion of conversational pedi@and conversational obligations has

been introduced to the agent.

Conversational Policies

A conversational policyepresents a communication or dialogue converthiah
restricts what messages or performatives can be a®h in which order they must
follow. Conversational policies can also speciffions of turn taking and abandonment,
such as when a message response took too longrerdhe changes in the environment.
The majority of research on conversational poli¢ias been on communication among
agents, especially with heavy rational semanticdefine speech-acts and model types
such as negotiation.

In [10] finite state models are used to construsetof conversation schemas, a
form of conversational policy. They specify thenfoof a conversation, but leave open
the content. The use of finite state models walllter addressed during the discussion
of protocol specification techniques to model casaé&on.

Conversational policy validatiomust prove the correctness of a given policy. In
particular, it should be able to prove that alhsigions in the policy are possible, and that
Nno necessary transitions are missing, and the Btetes are actually endpoints of a
conversation. In addition, a conversational poigcgften applied to a particular purpose,
such as setting up a greeting, or negotiating em.it In order to prove that a policy is
suitable for a particular purpose, the expectedhbien of the conversation’s participants
must be specified. These expected behaviors mayimgs like ‘commitment to a goal’,
or ‘giving up on a point’ or ‘believing what wasigdo be true’.

Joint intention theory is used in [53] to specifymanunication acts semantics.
The authors analyze two conversational policies slmmv that these semantics provide

meaning behind the policies, analyze the policies donsistency and combine the

www.manaraa.com

36

conversational policies into more complex dialogueBheir methods for performing

verification is merely just showing how the spemations change throughout the policy
and reflecting conceptually on what happens. Tlaeeeno real verification techniques,
just merely human inspection.

While agents can follow communication protocols eefively, a human
participant may not know of such protocols, nor lgaihey be inclined to learn them in
order to communicate effectively with agents. Tbaversational policies provide severe
restrictions in agent systems and control whatlmarsaid, and when it can be said. In
application to actual human conversation, thisriggin must be dropped on the part of
the human participant, but not on the part of thend This adaptation would allow the
human to break discourse conventions when necedsaryprovide the agent with
coherence. Rather than abandoning many of theseersational policies, they can be

relaxed into either conversational obligationsayered and used with the focus stack.

Conversational Obligations

Obligations represent what a participant shoulddshould not do, according to
the norms of the medium in which they are basedcigb obligations [57] are derived
from rules of social convention, often using Deorltgic. Similarly,conversational
obligationsare a form of social obligations that specify whaparticipant should or
should not communicate during a conversation.

Most dialogue systems attempt to connect dialogie directly to an agent’s
beliefs, desires or intentions. However, [57] aeets them to obligations which then fit
alongside beliefs, desires and intentions withiragant framework. They discuss how
this is a better alternative than relying on gadd@ion or intention recognition,

especially when dealing with non-cooperative agents

www.manaraa.com

37

Dialogue Systems
A dialogue systemttempts to use dialogue models in implementatioreontrol
the interface to a program or set of services. aBse of the simplicity of dialogue
models, most dialogue systems in use today take @mgle role pertaining to the
application domain. Applications that help you b@oflight, or movie tickets follow an
information seekingole. Command and contrgdertains to giving orders to a robot or
agent. Other roles may involveelievable agentalso known as chat-bots, or even

tutorial systemswhich are designed toward teaching skills toer.us

Dialogue Task Complexity

Dialogue models do need not to have conversatioaphbilities, nor support
natural language; however, they do share two inaporproperties. The first property
defines how the state of the dialogue model treomst and the second property defines
the possible contents of the message, or messagbwary. This section presents a
brief history [1] of the types of dialogue systeaisng with a discussion of these two
properties. Given both the history and the condéxhis dissertation, the systems will be
placed within a task-oriented context.

The first and simplest dialogue systems are baseithite-state scripts, allowing
the user to input certain symbols in specific Staté&n example of this type of system
could be a touch-tone menu one used to encountephone calls with automated
systems. Typically, each state represented a iquesind the user’s input would
represent their response. This type of dialogustesy uses strong conversational
protocols, clearly defining how states transiti@ong with a set of known, finite
message symbols. There is no uncertainty in e bf system and the entire model,
along with all possible sequences of interactiamlwa clearly defined.

The second type of dialogue system, a frame-bagsters, represents early

information seeking dialogues. The user typicalbks questions, to which the system

www.manaraa.com

38

responds. The flexibility of the questions and plssibility of clarification dialogues are
up to the dialogue model. The more flexible modalswalk the user through filling in
information for each field in a given frame and\pde the query result once the frame is
complete. An example of this type of system wdwdgetting airplane arrival, departure
and gate information. In the walking fields apmiodhe system would ask first for the
airline, and then the flight number. Models thet aven more flexible will allow this
information to be filled in out of order. The vdmdary is generally known and finite, in
this case the system would only need to know pdaticairlines and flight numbers, as
well as how to recognize them. In strict conveosetl policies, each field of the frame
must be filled in when it is asked. In flexiblens@rsational policies, the fields may be
provided in any order. Even though the transitioresy be flexible, the vocabulary is
well defined, and thus there is little uncertaimtyhis type of system.

An extension to the frame-based dialogue systeowallmultiple frames to be
accessed in a set of contexts. An example of sudlalogue system is a travel agent,
where the first context is in finding a flight, atite last context is in finding a hotel or
car. The arrival, departure and location inforimatare carried from previous frames.
Even the first context can include multiple fram&sch as finding departure and arrival
cities and then finding seat preferences. Sintasingle frame dialogue models, the
vocabulary for each context is typically finite akbown. The transitions between the
sets of contexts are generally also finite and weflned. Therefore, there is also little
uncertainty in this type of system.

Dialogue models are often extended through thefattant of a plan library; such
models are referred to as plan-based models. dNypicthese plan libraries are
collections of pre-programmed domain-specific ptawes. This type of model
represents an elegant marriage between the sttsition capabilities of finite-state
models with the information aggregation capabsited frame-based models. A given

step in the plan may request information from teerpor formulate responses from the

www.manaraa.com

39

system. The exact path the procedure will takeased in part on the knowledge of the
environment, and in part on the interaction witke tiser. This approach is expressive
enough to emulate all of the previous types. Mostent commercial dialogue systems
are based on the plan-based approach. Althoughr@asonably certain how a given
dialogue may play out, it is difficult to prove then-existence of incorrect behavior. In
addition, the vocabulary can be somewhat unknown.

Leading edge dialogue systems utilize an intelligegent in place of a plan
library. This allows the dialogue system all o€ taxpressiveness and flexibility of a
plan-based model along with the additional abgiteé reasoning, adapting and learning.
The vocabulary in this type of model is considensaistly unknown and the transitions
between modes of operation and contexts are hgrethct.

The earlier types of dialogue systems representért sonversational policies
and thus forced the user to a limited vocabularg specific transitions. This greatly
reduced the expressive power of user interactiodnaade the system feasible by shifting
the interaction from uncertainty to certainty. Hoer, in the latter types of dialogue
systems, the expressive power of the underlyingehbds been improved; and as a
result, the system is brought from certainty intocertainty to accommodate the
naturalness and flexibility of user interactionhid often causes the system to abandon
the abilities of explicit deterministic behaviordasystem verifiability. It is the goal of
this dissertation to provide fundamental engingpnnethodologies to allow for this

increased expressive power without sacrificingitiegrity or verifiability of the system.

Dialoque Managers

A dialogue manager is the core component of a gisdosystem, which
incorporates the dialogue model and conversaticaadbilities. This section will discuss
the composition and operation of the manager amdcumderlying models. Dialogue

managers can reason about a task being discussekl thhe context of the conversation,

www.manaraa.com

40

understand partial information and clarificatiorgncutilize turn-taking strategies for
mixed-initiative interaction, and more. These dalitzes are based in part on the
underlying dialogue model.

In a typical conversational dialogue manager, ther will speak or type text.
Speech and language understanding componentdhesilttanslate this into an utterance.
Part of speech tagging and parsing is then userktde a frame. The frame represents a
semantic representation of what was said by the udest dialogue managers deal only
with frames and leave the creation of frames upth@r language components. Frames
are processed in the dialogue manager by applhyieg1tto the underlying dialogue
model and generating results. Other componentsh sas utterance and speech
generation then use these resultant frames to @ener response that the user can
understand.

The underlying dialogue model utilizes several im@at components [41]. A
dialogue historyis a record of the dialogue in terms of what wé®rad by both
participants. The history also might include me#ta on how each utterance was
interpreted as well as the previous implied conpnastand clustering of utterances. This
provides a basis for not only anaphoric resolutlaut, also conceptual coherence. The
context often referred to as the focus stack represenfmoitant utterances, shared
objects and concepts currently under the attergiothe conversation. The context is
used to derive important structural relationshipthe ongoing conversation.

Dialogue managers may also use the following typleknowledge. Aworld
knowledge modehcludes the core commonsense reasoning requiredpieration. A
domain modelincludes specific information about the domain.en&ric models of
conversational competengepresent knowledge of ‘principles of conversdtiosuch
principles might include turn taking and discouodigations. Auser modelepresents
information about the user relevant to the dialogAedialogue manager uses all of these

types of knowledge to fully understand and resalggven frame.

www.manaraa.com

41

Dialogue managers often utilize knowledge to penfantention recognitionor
the attempt to understand why a user uttered &pkmt phrase. In addition, they utilize
the intentions of the system to figure out whasag next, when to say it and how to say

it, also referred to asontent planning

Dialoque Control

The control mechanism behind dialogue managementtake a variety of
approaches. The simplest approach is to baseotiteot directly on the system’s beliefs
and intention states. This causes the systene#&b imteraction as reactionary and does
not allow for comprehensive conversational competen

Another type of approach is tiileeorem proving approagchn which the dialogue
control attempts to acquire axioms that are misbuigrequired to complete a given step
in the theorem. Only the user has the requiredvieage to build these axioms, and
therefore interaction must occur. Any added infation that the user provides will
directly be placed into the reasoning of the systefhis type of dialogue control is

driven by a set of logics and a desire to obtaiesalt.

Plan based approach

The dialogue control mechanism of many popular esyst use a plan-based
approach, in which utterances themselves are treatalogously to actions in a planning
system. Just as a planner selects specific actmrearry out a goal, utterances are
selected in order to achieve a goal. The benktinderstanding this relationship leads to
intention recognition In this approach, intention recognition is pemied by tracking
plan paths to determine which plan or end goaluber is trying to accomplish. Two
popular models of planning used in many dialogustesys are that gbint intentionsand
that ofshared plans

The problem with systems that rely on plans anenitibn recognition is that they

often impose cooperation, especially in which tgerd must understand the plans of the

www.manaraa.com

42

participant in order to adopt their goals. Thiske®it impossible to reason when an
agent does not need to cooperate or understandodheipant, especially where

cooperation may conflict with the agents intermglsoning or personal goals.

Rational Interaction

Another method of dialogue control views communaragsintelligent behavior
also referred to amational interaction This is based on the premise that an intelligent
system is required for intelligent dialogue. Thedretical framework behind rational
agency is built on the work of [16], later extend®d[49]. They introduced a set of
logical axioms that formalize simple principles odtional action and cooperative
communication.

In [48], the user’s utterance can result in a cledineasoning. For example, the
utterance “what is X?” is interpreted into an inten or desire for the user to know X.
The system then adopts the intention that the wdkeknow X. In order for the user to
know it, the system adopts the intention of infargnithe user of X. The chain may
follow into certain reasoning stages such as,dfuker needs to know more or less than
X, or if user should not know X due to securitytrigsions. The chain of reasoning is not

predefined, but instead is rationally deduced fpymciples of communication.

Example Dialogue Systems

In order to understand the approaches and methbdglogue modeling and

control, as well as their contexts of use, twoaljake systems will now be introduced.

TRAINS

TRAINS [57], is a spoken language dialogue systepable of mixed-initiative,
cooperative planning in the domain of scheduliragng and shipping. The goal of the
system has been to build a spoken language systdmspecific capabilities, and the

underlying theory has been added and refined tcerttak possible.

www.manaraa.com

43

The TRAINS architecture augments the plan-basedeinbyg using discourse
obligations to account for discourse behavior. Thetextcomponent uses a discourse
obligation stack where obligations are derived alyefrom communicative acts. Each
incoming conversational act is mapped directly todiacourse obligation, which
represents the obligation type and content. THéigation is put onto a stack. In
practice, a participant must respond to the mastn#y imposed obligation, therefore a
stack is appropriate for this model. The contrechmanism is programmed to respond to
any pending obligations before considering othertspaf the context. The control
mechanism removes an obligation from the stack teanaslates it into an intention to
communicate. If the agent is able to communicateproduces an outgoing
communicative act. If the agent decides to abanberintention, the source obligation
that created it will be returned to the stack.

This method of translating communicative acts imtiscourse obligations,
adopting intentions and responding with commumneatcts allows the system to reject
proposals and refuse to answer questions, butliiges not have higher conversational

abilities such as persuasion or negotiation, nesdbhave basic ad hoc competencies.

Collagen

Another successful dialogue system is Collagen, [@Rjch is a truncation of the
words ‘collaborative agent’. Collagen is used asagent that can observe a user
interacting with a shared interface and offer athis of assistance including training the
user on how to use the interface, correcting problavith the way the user is using the
interface, and suggesting what to do next. Coflagees an abstract, hierarchical
representation of the environment to build a taskleh This allows it quite a degree of
application or interface independence.

Collagen relies heavily on a plan tree that costaiarious procedures on how to

use the interface task model. This plan treeaiskied by the actions of the user or agent.

www.manaraa.com

44

The plan tree gives Collagen the necessary knowléalgrain and suggest the next steps
in a given procedure. Collagen also maintainsrgka focus stack that tracks the current
focus of attention.

Collagen uses a universal discourse language pHpecify the interpretable
form of incoming statements. However, most impletagons of collagen use a choice-
selection template-filling approach that allows tiser to select predefined messages to
communicate to the system. This greatly dampemsiser's expressiveness and restricts

the interaction to merely a handful of possible sages.

Conversational Bots

The conversational bot arhat botis another type of dialogue system. The
purpose of this type of system has nothing to dib wontrol or behavior. Rather it is
intended to attempt to hold a convincing conveosatwith a human user. Most
conversational bots are a clear example of a syshahdoes not try to implement
intelligent behavior, but merely mimics intelligdmthavior.

Alan Turing proposed a simple game to deal withghestion of whether or not a
machine could think. Although he referred to treang asThe Imitation Gameit is
known today as th@uring Test In this game, there is a person, a machine and a
interrogator. The interrogator is separated plajisicdrom both the machine and the
person, and is only allowed to pose questions tounknown entities. Upon receiving
responses to the question, the interrogator igeatify which entity is the machine and
which entity is the person. The premise behind tdst is that if the machine were
intelligent enough, than the interrogator would betable to tell the difference.

The Loebner competitionis a modern day Turing test, holding an annual
competition in which judges, or interrogators, conmigate with unknown entities across
a computer terminal. The computer terminal onlpved simple text to be typed back

and forth, much like an instant messaging or cpptieation. Although most judges can

www.manaraa.com

45

clearly identify the computer from the person, tlaeg asked to distribute a fixed number
of points between two entities. Thus, the intellig appearance of an entity can be
assigned a numerical value. The computer withhipkest value wins the competition.
Most modern day conversational bots are based b\ang a result similar to
the Turing test, where the goal is to try to cooeirthe user that the system is a human.
Often they are developed by creating a setesiriting rules or triggered responses.
These responses can be atomic, such as “Hellobnelspwith “Hello”; translation, in
which “Hi” is mapped to “Hello” so that the systeran respond to the atomic “Hello”; or
pattern recursive translating “Do you know whats®’ito “What is X?” to be properly
handled by the system. The input is oftermalizedby expanding all contradictions
and removing ambiguous punctuation; and splittthgs allowing for multiple triggers
from an utterance. For example, “Hello, my namé&iswould split into “Hello” and
“My name is X” as separate statements. The adlfimtelligence markup language,
AIML [59], is an XML based language consisting ath triggered response rules.
Although it is important for a conversational agemconverse naturally to most
effectively communicate with a human user, it is goal of this research to focus on the
behavioral components and the language after naamguage processing has taken

place.

Engineering Methodologies

Several engineering methodologies have been dex@lmp dialogue systems. A
series of projects are outlined in [41] that spediést-practice methodologies for the
development and evaluation of dialogue systemse cimsensus of these methodologies
involves the following.

» Selecting tasks to perform when interacting witiuanan participant.
» Developing specifications for dialogue structurattwill support selected tasks.

» Gather vocabularies and language structures usedagnition. (corpus)

www.manaraa.com

46

» Constructing a system that meets these criteria.

Shortcomings

There are a few noticeable shortcomings of curde@albgue systems. First, there
is a lack of corrective dialogue models, or modelsch are capable of reinterpreting
past input. For example, if the user states, “Bhadt what | meant” the system should
be able to review past ambiguities and identify aeptial misinterpretation, then
reinterpret the origin and resolve the context.

There is also a lack of learning in dialogue modéTsirrent dialogue models are
not able to pick up idioms or colloquiums, nor adaper models to specific reference
nomenclature. For example, if the user were totliseexpression “That'’s just the tip of
the iceberg” and later the system was able to wtaled that the expression was
equivalent to “That’s just the beginning”, thersktould be able to map all future uses of
the iceberg expression to its intended meaning.s T critically important because
idioms and colloquial expressions include a sigaifit amount of intentions and other

implied meaning.

Behavior Development
Thus far, this section has covered the communicagimong agents as well as
human-agent communication; including how the imdelt agent interprets, reasons
about and responds to interaction with a conversaltiparticipant. Dialogue systems
capable of information query and cooperative plagnhave been discussed but not
systems responsible for command and control. €hemder of this section is devoted
to how communication can be applied to developind managing the behavior of an

agent.

www.manaraa.com

47

Behavior Implementation

There is a variety of ways to design the behavepeats of an intelligent agent
within a computer system. Some of these have ligted in table 5. Although the list is
not exhaustive, it is comprehensive and presentonaganied characteristics for

discussion.

Table 5: Types of Behavior Implementations

Type Manipulation Modifiable Speed Flexibility Properties

Hardware Never Never Fastest None Constant, Reliabl
Hardcode On Release Never Fast Little Predict&taéable
Modules On Release Selection Fast Modular Predet&eliable
Scripted Online Trained Slow Much Semi-Predictable
Graphical Online Intuitive Slow Much Semi-Predid&ab
Rule Set Online, Self Intuitive Slowest Much Senmgdedictable
Model Online, Self Natural Varies Most Semi-Unpdble

It is possible to design the behavior of an agerttardware. This was popular
with many of the early intelligent robots, espdyialt a time when hardware was readily
modified. A direct hardware implementation careBremely fast and reliable, however
it is hard to modify. Instead, many intelligenteats are compiled in software as either
part of a program or an extensible module. Thighow also yields predictable and
reliable systems that can operate in real time.wé¥@r, these systems are also not
readily modifiable unless they were programmed widlnious options or parameters.
Often, these types of systems only represent th@aking of intelligent behavior.

In scripted and graphical approaches, the beh&vigpecified through a series of
readily modifiable scripts written in an interprétanguage. Although the interpretation

mechanism can yield inefficiencies in processimgeti the flexibility of this approach

www.manaraa.com

48

allows even the user to reprogram the behavionratime. However, special training or
knowledge of the scripts and the scripting languagg be required. Similarly, in a rule
set based approach, the behavior is specifieddmflection of rules that govern how the
behavior operates. Rules may be added, removechaolified as well as the rule
selection and execution algorithm. Again, this rappgh can yield inefficiencies in
processing time, and the user may be required e bBpecial knowledge or training in
the rules or the rule engine. In addition, thiprapch can yield unpredictable results. As
with more conventional approaches, interpretedratelset approaches often only mimic
intelligent behavior, with the exception that theem be some reasoning and learning in
the rule engine.

The model-based approach is the most powerful dmd most expressive
approach. Behaviors are represented by a setstfagb concepts, such as objectives,
constraints, actions and procedures. An exampéebehavior model is the belief-desire-
intention model as discussed previously. Behamiodels often employ planning and
reasoning systems, allowing the model to reasoneard. In addition, behavior models
are often based directly on the observed behavibumans and thus seem more natural
and intuitive to the user. Applying natural langedo a behavior model and behavioral
concepts is more intuitive than translating thelaayge into scripting elements or rules.

Behavior development represents the ability of diperator of the system to
readily create, modify, manipulate and manage hehav The assistive agent in this
dissertation attempts to develop behaviors intemglgt in real time; and manage those
behaviors to deal with inconsistencies, incompletsrand conflicts. A behavior model

approach is required in order to accomplish thigllef behavior manipulation.

Interactive Behavior Development

There are several systems capable of developingvimehthrough interacting in

real time. The earliest of these systems wereragfeto ascommand and contrpin

www.manaraa.com

49

which commands would be given by a human operdtothese early systems, the only
feedback presented by the system to the operatereither error messages or pre-
programmed informational messages. There was mbexi let alone any kind of

dialogue. These systems pioneered the translafisgoken and typed sentences into a

semantic representation for execution.

Task Representation

In natural language driven systems, the utterarafethe operator must be
translated into a semantic representation, whiehstfstem can understand and execute.
There have been a variety of specifications forioagt objective and constraint
representation in intelligent agent systems, blit arcouple have had the capabilities of
representing information conveyed in language, rtost notable of these systems the

parameterized action representation, PAR [6].

Types of Interaction

Previous research [37] presented various typesialbglie used in interactive
behavior development. This list is not exhaustibeit encapsulates the current
capabilities of many dialogue capable agents.

The types of dialogue are organized into seve@gg, as illustrated in table 6.

The first groupcommand executiomcludes the basic capabilities of providing
commands and information to an intelligent ageihis represents primarily one-way
communication in which the user speaks and the taigens. The second group,
command feedbackjlows the intelligent agent to communicate baxkhe user. Thus,
the user and the agent can hold discussions. ¥jpes tof discussion are limited to
clarifying or providing feedback on commands andeos. Both of these groups directly
affect the behavior of the agent. The fourth tgperoup,system interactionpertains
mainly to querying information such as the statetled environment or the agent’s

behavior. This group has little to do with affactithe behavior of the agent.

www.manaraa.com

50

The third type of grouggnowledge transferllows information to be exchanged,
thus allowing for both learning and complex reasgni The last groupbehavior
synthesispertains to learning procedures or communicatis@s. Both of these groups

affect the behavior engine of the agent and theid#havior indirectly.

Table 6: Dialogue Types of Interactive Behavior Blepment

» Command Execution
0 Simple Instruction
Complex Instruction
Conditional Instruction
Single Event
Continuous Event
Asserting Constraints (Standing orders)
Relaxing Constraints
Asserting Objectives
0 Relaxing Objectives
» Command Feedback
o Clarification
* |ncomplete Task
» Inconsistent Tasks
* |ncapable Task
* Knowledge Transfer
o0 Perception Knowledge
o Domain Knowledge
o World Knowledge
o Consequence Implication
e System Interaction
o Information Query
» Behavior Synthesis
0 Learning by Description
o0 Learning by Inquiry
0 Leaning through Discussion (abstract representstiglans or recipes)

O O O O o0 o o

www.manaraa.com

51

Synopsis — Melding Perspectives

This section provided glimpses of the relationstbpsveen communication and
behavior inside the intelligent agent by providrackground material pertaining to their
integration. The qualities of this relationshipge amportant, as the next chapter will
describe the theory behind a marriage of thesentdopies.

The section began with the communication among tagelscussing both the
broad transport level between them as well as geziic languages they may use.
Various discourse conventions and dialogue systamse discussed. The section
finished up with a discussion over the various beiradevelopment strategies and some

preliminary work in the area.

Empiricism and Rationalism

Before protocol engineering techniques and metlogies are discussed, it is
important to understand more of the philosophicaivg behind this area. This section
will discuss several important perspectives that ba directly related to the study of
artificial intelligence as well as the design, Yiedation and testing methodologies of
various engineering disciplines. These perspextiwdl enhance the understanding
behind the separation of both fields as well avidereasoning behind the actions and
choices made in this dissertation.

Russell and Norvig [47] describe four core pergpestthat segment the study of
artificial intelligence. These four segments areated by the combination of two
properties. The first property is whether the lligent of an agent relates to ‘rational
behavior’ or ‘human behavior'. The second propéstyvhether the agent ‘thinks’ or it
‘acts’. These four segments are composed of ddbfas follows.

Agents thatthink rationally are based on concrete well-founded logics, often
employing expert systems and other reasoning esginat precisely calculate their

behavior. Agents of this nature often fall inte toncept of rational agency. Agents that

www.manaraa.com

52

act rationally are based on developing engines that mimic igesili behavior, but need
not act as a human would act. For example, thgsestof agents would probably not
emulate emotions. Agents thatdt like humansre also based on developing engines that
mimic human behavior much like the chat bots disedgreviously. Finally, agents that
think like humansare often based heavily on cognitive or psychalalgioundations,
attempting to simulate brain functions or mentaldels. Agents of this nature might
employ neural networks to accomplish their behavior

The distinction between acting and thinking in ¥@wvs discussed above create a
perspective of internal and external observatidine internal view of an agent, how it
thinks or operates, will be referred to asaional view, or the view of arationalist
Similarly, the external view of an agent, how itsaand reacts with its environment, will
be referred to as ampirical view or the view of ampiricist

The original idea behind these scientific views waspired by the article
introducing thanteractive machin¢60]. TheTuring machingnamed after Alan Turing,
is a computational model capable of calculating tmadsthe known algorithms. For
intended purposes, the Turing machine is extremedyional, constructed by
understanding the core theory of computation. Hibwaperates and its computational
power is often emphasized more than how it interagth its environment. Often, the
Turing machine cannot react at all, but has atheftape, or memory, of its calculation in
advance.

The interaction machine describes a machine theataots with its environment.
How the machine is constructed is of no consequemgerather its capabilities when
responding to environmental changes is emphasiZéa. interaction machine is at least
as powerful as a Turing machine by simply encapsigiaa Turing machine inside any
given interaction machine, however it is imposstolencapsulate a interaction machine
inside a Turing machine. The interaction machiae explain many problems such as

how an ant can successfully navigate a huge anglearenvironment such as a beach.

www.manaraa.com

53

The Rationalist

The rationalist is often on a quest for certaimg aompleteness. They use tools
of thought such as reasoning and deduction andsfacu logical and mathematical
models.

When trying to prove the correctness of a compsystem, a rationalist will use
proof-theoretic approaches such as process algelmddormal languages. They will
prove that a system fits to its specifications tigto direct logical reasoning.

When modeling natural language, the rationalistr@ggh would be to create a
specific protocol, which would be complete and weilined, then force a human
participant to use this protocol when interactinghvan agent; thus bringing the human

from uncertainty to certainty by only acceptingtaar inputs in certain states.

The Empiricist

The empiricist is an observer, collecting inforroatiabout the world through
observation. They use tools such as generalizafigrartial knowledge and abstraction
and focus on models of interaction.

When trying to prove the correctness of a compsistem, the empiricist will use
model theoretic approaches. In model theoreticagghes, it is often impossible to
demonstrate the non-existence of incorrect behaviRather, the goal is to demonstrate
the existence of correct behavior. This will léadhe inability to prove that a system is
correct and instead lead to the assessment of rtiwaurd of correctness, or lack of
incorrectness, in a system.

When modeling natural language, the empiricist appin would leverage the
observations of human-human dialogue to attemptreate specific behaviors and
incorporate these behaviors into a protocol. Thaly allow this protocol to be
incomplete, based only on partial observationsis Whll bring the agent from certainty

to uncertainty to avoid inhibiting the human’s exgsiveness.

www.manaraa.com

54

Communication and Behavior

No specification can fully encapsulate the compiesiof the human language.
In fact, no specification can fully encapsulate tmnplexities of even a human task-
oriented language. The specification must be ntadshange, because of not only the
mutating and fluctuating nature of human langubgé also it must be made to expand as
more and more capabilities of natural languagaiaderstood and introduced.

Abstraction is a key tool in simplification. Thenpiricist uses it in order to focus
on subsets of relevant attributes and ignore wegle ones. In natural language, in
particular, all of the irrelevant attributes suchk eolloquiums, slang and idiomatic
expressions can be ignored and the true meaniatjesinces can be processed.

Abstraction produces incompleteness. Incompletemnagplies that proving the
correctness of a model is impossible. Thereforepfptheoretic approaches would be
impossible. However, model theoretic approach&svathe specification of behavior
and subsequent tests of that behavior.

Because of the very rational nature of agent deaith the inability to specify
completely the complexities of the human languagdarjidge must be created between the
agents understanding and the human’s expressiabitiips. The empiricist approach
to this gap is the more interesting field of reshar The incompleteness in the models
can only be approached by model theoretic viewsgchviallow the specification of
behavioral properties and subsequent verificatidhat behavior. The use of abstraction
will simplify the model as well as its understarglin In addition, model theoretic
approaches provide a better foundation for asymshamd nondeterminism than do proof
theoretic approaches.

Therefore, this dissertation must give up the go&l complete behavior
specification, and replace it with partial speafion. Because the models are based on

the behavior specification of interfaces, views amodes of use, software engineering

www.manaraa.com

55

and protocol engineering, methodologies can be usedpecify the interfaces and

provide a beginning for the development of forneahniques.

Protocol Engineering

The recent advances in speech and language pnogésshnology, along with an
increase in the demand for more natural human ctenpnterfaces have produced new
technigues for the understanding and modeling aohdm practical language. These
modeling techniques are applied to human-agent conwation, yielding a variety of
ways to communicate with an agent. However, sisfakmtegration of these models is
difficult. The majority are created based on ueideatures of the language being
modeled or the application on which the model iplemented. This creates significant
architectural differences and other incompatil@titiwhich make the integration of these
techniques difficult if not impossible.

In order for an agent to understand and communiwéte a human, the human
practical language, although complex, must evelytsd converted into a form that a
computer can manipulate, interpret and understaBdcause an agent is based on
concrete mathematical and algorithmic principlés, mature of their understanding of a
given dialogue will allow that dialogue to be comf@d to the majority of the properties
found in a computer protocol.

Protocol specification, test and verification teicjues have matured over the past
quarter century to yield systems capable of modebnset of protocols, verifying
properties about them such as completeness, safetyiveness, as well as generating
test suites capable of proving the conformance gfr@ocol implementation to a
corresponding standard.

Informally, a communication protocol can be defirseda set of rules that govern
the communication between various components ofsdesr. Although traditional

coding practices can be used, and even have besemsuccessful at designing and

www.manaraa.com

56

implementing protocols, these practices have alsmdyzed a high frequency of
undesirable behaviors in most protocols. This esghat formal specification and formal
technigues for the design, implementation and reasmce of protocols is desirable. In
fact, many of the arguments for the applicatiorfosimal techniques to software testing

can be used as arguments for protocol testing.

The Beginning of Protocol Engineering

Protocol Specification, Testing and Verificatios, the mature field of applying
engineering principles to the design, implementaéind maintenance of protocols.

The first major push for formal protocol specificat techniques came with the
development of the open systems interconnect madsd, popularly referred to as the
OSI 7 layer model. Standards organizations suchS&3 and CCITT that were
developing the OSI model saw the need for formakqmwol specification and formal
description technique working groups. The purpafsthese groups was to research the
possibility of using formal specifications for O@lotocols and services [9].

These groups laid the groundwork for the develognoérconformance testing
and property testing. These original working gupere also responsible for the
development of the first adaptations to formal #pp=ation languages for application to
protocols, which led to the languages ESTELLE, L&T@nd SDL. Each language
comes from a unique methodology and provides thaptete semantics of a valid
specification. This initial thrust set the pacel dacus of the field for the next twenty

years.

Rationalism and Empiricism in Protocol Engineering
Although there are many approaches to the modeliqyotocols for the purpose
of specification and verification, these methodkifdo two main categories, the rational
approach and the empirical approach. These twensfic views are described in the

previous section. A rational approach can sometib® transformed into an empirical

www.manaraa.com

57

approach, as with the case of only verifying a aletases, rather than every case.
However, it is impossible for an empirical appros&ahransform into a rational approach.
The empirical approach is often used when the podtis too complex for the rational

approach to execute in any reasonable time, or \altempting a protocol as indefinable

as the human language, the empirical approactbeithe only choice.

Test
Case
Generation

Test Cases

Formal

Protocol Design Specification \

Implementation Under Test (IUT)

Implementation

Figure 2: Empirical Approach to Protocol Testing.

The empirical approach to protocol testing is tated in figure 2. The protocol
is first designed and specified. The specificat®broken into two parts, a system which
is implemented using the specification, and a softéest cases generated by a special
test-case generating tool. The test cases arauhesgainst the implementation to verify
that it follows all of the behavior of the test eas This test is not complete, because it
can only show the presence of correct behaviorwe¥er, it cannot prove that incorrect
behavior is never present. Only the rational apghothrough proofs or complete testing

can prove a system does not contain incorrect behav

Protocol Testing Suites
Although there are a variety of techniques to géegrotocol, some protocols are

packaged with specific testing suites that are ggad automatically by the specification

www.manaraa.com

58

as well as any available usage statistics. Thesteng suites serve two main purposes
conformance testing and implementation assessment.

The purpose of a conformance test is to verify thatprotocol implementation
under test conforms to the provided protocol sjpeatibn. This ensures that protocols
can interoperate with each other, which is alsdterovalid conformance test in its own
right. The conformance test is a perfect examplblack box testing, where only the
outward viewable properties are tested, and notieeohner workings are addressed.

Implementation assessment is a process by whicisdcavailable tools, such as
test suites and benchmarks, to gather metrics adagiven protocol implementation.
Such metrics will give an assessment about a gimplementation’s robustness, or how
well the system handles problematic behavior, arfbopmance, or how well the system
performs the specified behavior, as well as interability, or how many other

implementations or systems are compatible withrtiementation under test.

Communication and Interaction as a Protocol

In order to be successful in incorporating the clexipes of the human language
into an intelligent agent, an abstracting view ofmenunication is required. Inspired by
the successful model of computer communication, dnuncommunication can be
modeled as a protocol. An example of protocol fdeyge for human speech
communication is provided in figure 3.

The key to incorporating this model with TCL is ligimg that at some point, a
human is thinking about a task, relating to speafincepts such as an object, an action
or an objective. These notions are abstracted ass g§ the protocol to allow an
intelligent agent to share those same abstractiois allows the agent better
understanding of the frame of mind the human isgigd communicate.

Similar protocol stacks should be present for ottmedalities; however, they

should be abstracted of all modalities by at |¢lasttask model layer. The task model

www.manaraa.com

59

layer specifies a point at which both humans anéntsy neglect the underlying
communicative structure and abstract directly oe throblem (or task) they are
interacting over. The task-model abstraction prssa frame-of-mind, which through

communication, attempts to be mutually understood.

Human User Computer

Commitment, Beliefs, Reasoning, High-Level Interaction Understanding

Knowledge, Intentions
A

Commitment, Beliefs, Reasoning,

(Collaboration, Negotiation, Explanation, Persuasion) Knowledge, Intentions

Interaction Management
v

Low-Level Interaction Understanding
Interaction Abstraction - - — — — — — — — — — —| P> Interaction Model
(Adoption, Selection, Identification, Evaluation)

K
Interaction Recognition and Application
v

Task Understanding
Task Abstraction -+ - — — — — — — — — — —| > Task Model Abstraction
(Objectives, Resources, Situations, Actions)

A
Task Recognition and Application
4

Dialogue Understanding
Pragmatics - — — — — — — — — — — —| > Pragmatics
(Turn Taking, Clarification, Acknowledgement)

A
Dialogue and Speech Act Theory

7

Utterance Understanding
Semantics -~ — — — — — — — — — — —| P Semantics
(Language Independent Meaning)

Contextualizing, Reference Resolution Reference Resolution and Context

Language Dependent Analysis
Syntax -+ — — — — — — — — — — —| P Syntax
(Context Invariant Meaning)

Sentence Understanding and Generation Sentence Parsing and Generation

Utterances and Sentences
Utterances -+ - — — — — — — — — — —| > Utterance
(Uh-huh, “Okay”, “Let’s do that”)

Pronunciation Speech Recognition / Generation

Individual Phonemes
Phonemes -+ — — — — — — — — — — —| P Phonemes

Muscle and Nerve Information Sound Capture and Generation

Vocal Chords / Ear Drum -t - — — — — — — — — — —| P Speaker / Microphone
(Sound Waves)

Figure 3: Human Computer Communication as a LayEretbcol

www.manaraa.com

60

Human User Intelligent Interaction Agent

Commitment, Beliefs, Reasoning, High-Level Interaction Understanding

Knowledge, Intentions
A

Commitment, Beliefs, Reasoning,

(Collaboration, Negotiation, Explanation, Persuasion) Knowledge, Intentions

Interaction Management
v

Low-Level Interaction Understanding
Interaction Abstraction - - — — — — — — — — — —| P> Interaction Model
(Adoption, Selection, Identification, Evaluation)

K
Interaction Recognition and Application
v

Task Understanding
Task Abstraction -+ - — — — — — — — — — —| > Task Model

(Objectives, Resources, Situations, Actions)
A A

Task Recognition and Application

Human Interpreter

v v
Dialogue Understanding
Pragmatics - — — — — — — — — — — —| > Pragmatics
(Turn Taking, Clarification, Acknowledgement)

A
Dialogue and Speech Act Theory

7

Utterance Understanding
Semantics -~ — — — — — — — — — — —| P Semantics
(Language Independent Meaning)

Contextualizing, Reference Resolution Contextualizing, Reference Resolution

Language Dependent Analysis
Syntax -+ — — — — — — — — — — —| P Syntax
(Context Invariant Meaning)

Sentence Understanding and Generation Sentence Parsing and Generation

Utterances and Sentences
Utterances -+ - — — — — — — — — — —| > Utterance
(Uh-huh, “Okay”, “Let’s do that”)

Pronunciation Pronunciation

Individual Phonemes
Phonemes -+ — — — — — — — — — — —| P Phonemes

Muscle and Nerve Information Muscle and Nerve Information

Vocal Chords / Ear Drum '4—- — — — — — — — — — — —| | Ear Drum/ Computer Speaker (*)
(Sound Waves)

Figure 4: Validation of the Interaction Protocol

The specific formal techniques and methodology el in this dissertation
cover the layers above pragmatics. Mainly, thahigh-level interaction understanding

such as collaboration, negotiation, explanation @edsuasion; low-level interaction

www.manaraa.com

61

understanding such as adoption, selection, ideatibn and evaluation; and task
understanding such as objectives, resources, isiigadnd actions. The layers above and
below may be abstracted away as with other layeretbcols.

In order to design and implement a system for ldyer alone, the lower-layer
systems will be replaced with a non-software baskeérnative as seen in figure 4.
Specifically, it will be replaced with a human, whiwill allow us not only to verify our
systems correctness, but also to validate the raysiigh real world experimentation that
would otherwise not be possible with today’s tedbgy, or lack thereof. This type of
experimentation is referred to as wizard-of-ozdeascribed previously.

This replacement will allow the system to be depetbahead of the development
curve, thus it will be ready when the technologicbas up, as well as motivate current
linguistics to accomplish the required developnierdwing that it will used as soon as it

is available.

Design and Verification Process

Miller [42] discusses an iterative approach to #pation, treating verification as
a design stage, which provides immediate feedbatked designer. The verifier works
on a large number of small problems, rather thamall number of large problems. This
helps to avoid exploding the state space and treutestability of the model.

The model, as seen in figure 5, specifies the systbrough developing
specifications for each of the major componentthefsystem. The components are then
verified against the specification of the systehhis is the ground case, or base case, and
generally based upon the stakeholder needs anénsystquirements. Once each
component has been adequately verified, each coempas then broken into smaller
components, and the iterative step will verify thia@se sub-components are specified,

verified against the original component specificatand iterated upon themselves.

www.manaraa.com

62

Another iterative verification process is taken[36], which attempted to assist
field experts in recognizing the linguistic instasmf a set of concepts in texts. In their
system, the text is analyzed and as much informasoextracted as possible. Then
several instances are highlighted and the expetlis to introduce new knowledge into
the system to assist in the analysis. The syssethein re-run against the original text
iteratively. Each successive addition of knowledgel test against the text produces
more and more coverage of the understanding.

A hybrid approach has been developed leveragin@dvantages of both of the

above iterative design processes and will be dsslig chapter 4.

System
Specification
Component A | | ComponentB | | Component C
Specification Specification Specification
Component AL | | Component A2 | | Component A3
Specification Specification Specification

Figure 5: Iterative Approach to Specification

Protocol Engineering Properties
Before the discussion of the various approacheprtwocol engineering, two
important properties of protocols should be intreehl
The first propertymutual exclusionor the safety property, states that not more
than one process can be executing inside a criseation at any given time.
Furthermore, if a process is trying to enter iitical section and no other processes are

executing their critical sections, than the firsbgess should not be prevented from

www.manaraa.com

63

entering its critical section. Thieveness propertyadds an additional constraint. A
process that is attempting to enter its criticatise will eventually succeed.

In proving these properties, theethod of projectiontechnique is often used. In
this method, ammage protocols created through the aggregation of states, agessand
events. This forms a smaller and less complexopobdtabstracted from the original,
containing only the interested properties. If tedasuccessfully, any safety property of
the image protocol must hold for the original pomtb An image protocol is said to be
faithful if any safety or liveness property holds for theage protocol if and only if it
holds in the original protocol. Furthermore, ifpath in the original protocol can be
extended, then the image path can also be exteinddte same way as the original
protocol. Similarly, if a path in the image probbecan be extended, any path in the
original protocol can also be extended in the semane

The importance of abstracting protocols to imagatqmols and their relation to
various properties of that protocol will be impatain the development of the

methodology presented in chapter 4.

Approaches to Protocol Modeling
There is a variety of approaches toward the modadina protocol for property
proving, test generation or validation. Typicallye semantics are based directly on the
modeling techniques. However, a few systems takenaantic input representation and
translate it another for internal modeling. Onlimaited set of modeling methodologies
has been chosen for discussion. These have b&mteseeither because they are the
most popular used in protocol engineering or haveng implications for modeling

conversations.

The Nature of Protocols

Protocols have two strong characteristics thaterfte their design, specification,

modeling and test. First, protocols are very migactive in nature, seen often as event-

www.manaraa.com

64

driven and mode-dependent. This leads the behaegsed approach to protocol design.
Second, protocols are very much communicative iturea seen as constantly passing
information back and forth, manipulating and morh§y data through a series of data-
transforming processes. This leads to the commatinezbased approach to protocol
design.

Quite a number of the approaches listed focus tlrea one characteristic of the
two listed above, most likely based on the origisaftware engineering model. Then
they attempt to extend the model in order to inocage the other characteristic.

In addition, it is in a protocols nature to be netaiministic, which makes it
extremely hard to test. For example, it is diffido predict how many times a specific
input sequence has to be tested in order to aclaesgecific output sequence, or how
long the test will have to be in order to viewadhievable observations. A protocol may

also be partially specified, which also causes lerab in the approach.

Finite State Machines

Some of the first approaches were in the extensidhe finite state machine, or
FSM. This is often attributed to the finite statachine’s ability to describe the behavior
of a system, and protocols have very strong behavibaracteristics.

Finite state machines also have a set of relatsssciated with them that can be
used as conformance relations. Specifically: dngvalence relation, whether one FSM
is equivalent to another; the quasi-equivalencatiol, whether two FSMs behavior is
the same; and reduction relation, whether one FSiireduced form of another.

Fault models are generated for FSMs through thdicappn of a mutant
function. The typical mutant function types foetkSM are output faults, where the
output of a given transition is wrong; or transfaults, where the next state of a given
transition is wrong. Fault model based testingnsexcellent diagnostic tool in that it

does not only detect erroneous behavior, but ato mrovide possible causes, and

www.manaraa.com

65

locations, for that behavior and can determine iptessorrective actions. In natural
language, for instance, by applying a misinterpi@iebased mutant function, it is easy to
detect that a misinterpretation has occurred, dsagehe point of the conversation that
was misinterpreted and how to correct the curredetstanding path.

Fault models for FSMs however, can lead to whakrewn as state space
explosion. As the size of the finite state maclyrmwvs, the number of possible mutation
sequences grows exponentially. In order to coritngl explosion, a series of heuristics
are usually been developed. These heuristics asedbon information about the
implementation, the severity of faults, or hypothetesting. In addition, a major
limitation of fault models is that it does not deelvin nondeterministic and partially
specified systems and unfortunately the nature ahymprotocols, as well as natural
languages, is to be nondeterministic or partighgcsfied.

There are three major methods used to convertafigripecified protocols into
fully specified protocols. Implicitly defined transition adopts the completeness
assumption in which all do not care transitionbtesitare looped or go to an error state.
In language, this would be the equivalent of answger‘l don’t understand” when any
utterance is not understoodindefined by defaukhdopts the notion that all do not care
transitions could go to any state with any outputhis would be the equivalent of
skipping over any utterance that was not understand attempting to proceed with the
conversation. This is also knownwasak conformanceForbidden transitiontreats all
do not care transitions as forbidden. This wowddhe equivalent of immediately halting
the conversation if any utterance is not understoduk testing of reaction to unexpected

transitions is known astrong conformance

Extending Finite State Machines

Finite state machines alone cannot adequately idesthe communicative

properties of a protocol and thus several finitgestnachine extensions were developed.

www.manaraa.com

66

The leading method, communicative finite state naghor CFSM, imposes the

communication on the underlying behavior structilyeassociating various transitions
within the FSM with transmission or receiving megssa The transitions cannot be
traversed unless a certain message is sent oveeceilhe fault model is then extended
for the CFSM by specifically looking for a deadlocispecified receptions, unreachable
transitions and unbounded behavior, such as botferflows.

Like the FSM, the CFSM state space usually explod€$SM can then be
augmented with process variables, which allow $soaiation of predicates and actions
with transitions rather than just messages aloHewever, it is difficult to adapt fault
models to this newly augmented system. Some wasgklbeen done in attempting to
partition the states and transitions; howeveryésalting system is too high level to be of

any realistic use.

Petri Nets

Petri Nets are graphical representations that geowell-defined semantics for
modeling the behavior structure of a system, milan the FSM. Also like the FSM,
Petri Nets are a general description techniqueishased across a variety of disciplines
[35]. Petri Nets also provide a means of orgagizthe system into hierarchical
descriptions and allow control and synchronizatmtye integrated with a description of
data manipulation [3]. Petri Nets suffer from maofythe same problems that FSMs
encounter, however Petri Nets are a lot more egpresn their capabilities and thus may
hold potential to express naturally the more coospéd properties of human-agent

communication protocols.

Formal Grammars

Unlike CFSM and Petri Nets, formal grammars focustbe communicative
properties of protocols rather than the behaviofldle main approach is to use a formal

grammar to describe all of the allowable sequerdes particular protocol. Regular

www.manaraa.com

67

expression-based grammars translate directly toframa finite state machines and thus
hold no added interested for discussion. Howewee, may be interested in the study of

context free grammars and context-sensitive grammar

Process Algebras

Process Algebras is the algebraic approach tottlty ©f concurrent processes.
In this approach, the protocol is specified asreeseof equations, and a set of process-
based axioms is used to translate and manipulatotin of those equations. Literals of
such equations are atomic actions, or steps se@noassses, which are not subject to
investigation. Basic process algebra providesetlogerations: sequential composition
(*), in which one process is followed by a secontkrahtive composition (+), in which
one process or another process occurs; and pasentidiich can be used for order of
operations. The five core axioms of most procégshaa systems are listed below.

X+Y=Y+X

(X +Y)+Zz=X+(Y +2)

X+ X=X

(X+Y)ez=(X2)+(Y+2)

(XeY)ez=X<(Y+2)

Process algebras have traditionally been a praadrétic approach attempting to
demonstrate that an implementation and its spatific are identical through a series of
axiom-based transformations. However, the manijmatechniques have also been

used to transform the system into a representatead for the generation of tests.

Abstract Data Types / Nondeterministic Data Types

Nondeterministic data types attempts to model ttegopol based on data and
value passing. Unlike CFSM, Petri Nets and proedgsbras, this model is extended by

superimposing action and control flow on an undegdydata-centric structure.

www.manaraa.com

68

This model is mathematically constructed by assimgjaa special mapping with
each data type. Some researchers maps each oparatne to a binary relation between
the domain and the codomain while other researaharss each operation name to a set
of functional relations between the domain and coaia. Although there are differences

in the nomenclature, these two mappings are foarwet tequivalent.

High-Level Programming Languages

High-level programming languages have often beesrd us specify protocols.
UML based schemes may also fit within this categoryfraditionally, software
engineering based techniques are used for thegeatid verification of these systems,
generating test cases from the available use-casethe collection of specifications
pertaining to how the system is to behave. Howewethout well-defined system

specifications, testing is impossible.

Theorem Proving for Agent Communication Protocols

There has been some work on theorem proving olvén®us high-level agent
communication languages [11]. Specifically, FIPAaimtains a collection of
communication protocols in AUML. Because severath® communication protocols
have ambiguities, inconsistent states and the Ipibgsiof deadlocks, a four-stage
technique for checking a multi-agent system comgation protocol has been
developed. The technique is like any other prdteagineering sequence: build a model,
implement it in a language for a model checkerateesome property, run the model-
checker to verify that property. Because of theegality of these techniques as well as
their application only to high-level transport lay@otocols, they will not be discussed

further.

www.manaraa.com

69

Protocol Variations

Several variations within the nature of protocolgplg to conversational
modeling. Nondeterministic protocols allow prottscto be specified in such a way to
allow multiple possible paths of interaction. Tégwotocols are studied heavily within
distributed systems and several adaptations of mimmgnal methods have been
developed. Fault-tolerant protocols attempt toovec gracefully from disallowed
exchanges within a protocol. The scalable progdssiependent design for extended
reliability, or SPIDER, system uses fault-tolergmbtocol modeling. Probabilistic
protocols allow for nondeterminism but with the l@pito assign probabilities to each
possible path of interaction. The probabilistiandplic model checker, or PRISM,

operates on probabilistic models relevant to paiteagineering.

Communication and Protocols

Several properties of human communication influetiee design potential of
protocols as well as point out the various limagas of protocols that must be overcome
in order to form a successful marriage.

Most importantly, a protocol alone has trouble wgtbbal coherence and thus it
may not be able to model a conversation well. Ihe section on agents and
communication, the various aspects of a dialogueager were discussed. Although the
world knowledge model, the domain model and the nsedel can be abstracted in the
short run, and the intention recognition and canpdginning can be isolated entirely; the
dialogue history and the context are critical inimteining this global coherence. In
addition, the various models of conversational bdp@s must be directly reflected
within the protocol itself.

The human practical language is too complex andgdgstoo quickly to be fully
specified; therefore, the protocol must be capablpartial specification. Incremental

specification would allow the changing of the prabspecifications during the course of

www.manaraa.com

70

a conversation. Furthermore, the integration oftiglaspecifications into a single
specification model would allow the various behawpecifications to be incorporated
while alleviating a designer from the integratiaetals.

Certain responses or reactions are unknown withtoreversation and there are
many possible responses for a given utteranceeftiney, the protocol must be able to
support nondeterminism. Furthermore, certain nesp® or groups of responses can be
expected within a conversation; therefore, the etemninism should support
probabilistic properties. This would also yiela thapability of evaluating a metric for
the correctness of a given interpretation.

The interpretation mechanism will be overwhelmed ewhattempting to
understand the utterances from a human. Even haigam misinterpret one another in
conversation. Therefore, the protocol should supfault-tolerance. This should be
achieved by allowing the protocol to hold inhergmbperties such as clarification
dialogues and the statement of misinterpretatieurthermore, a self-correcting protocol,
would allow the backtracking and reinterpretatiércanversational history to correct and
guide the ongoing conversation.

There may be more than one topic of conversaticemgtgiven time, and these
topics may be discussed through the interleavingttefrances. Therefore, it is essential
that the protocol allow for multiple threads ofardctions, not only to model multiple
threads of conversation, but also to handle delagsponses, branching and converging.
Along the same lines, a conversational topic caenobe interrupted and later resumed.
Therefore, the protocol should also handle intésand resuming.

Many natural dialogues adapt to the situation, agpee and capabilities of both
speakers. For example, one would talk differettlg preschooler than one would speak
to a college student. Therefore, the protocol Eheupport adaptive properties. Being

able to change based on the conversational neettg gfarticipants, possibly through

www.manaraa.com

71

user modeling. Other adaptability would allow thetocol to learn throughout the
conversation, picking up new nomenclature, proceslor conversational capabilities.

Lastly, in interacting with an assistant agent,oatext-driven protocol would
benefit by allowing the conversation to be taslewoted, goal-oriented or knowledge
seeking in addition to being able to take on suockdes as persuasion or negotiation.

As one can see by examining the above list, prétengineering falls short of
being able to model the complexities of the humanglage. However, protocol
engineering provides a foundation of formal teche& and methodologies and it is
believed that the majority of these limitations da overcome. These limitations are

addressed by the interaction model validation exptér 3.

Revisiting the Spectrum

This chapter has provided all of the backgroundessary in understanding the
concepts of this dissertation. The communicatipecum was laid out, from the
models of how humans communicate to the modelg@ftabehavior and the relationship
between them. The idea of abstraction, the dichgtof certainty (rationalism) to
uncertainty (empiricism), and the vast complexibéshe human language and its impact

on communication protocol modeling have all beeritptl along this spectrum.

www.manaraa.com

72

CHAPTER 3
PRACTICAL COMMUNICATION LANGUAGE

The previous chapter introduced a philosophicalcspm spreading from
communication to behavior and relating that spectta the intelligent agent. It is the
goal of this chapter to continue along this speutrby developing the necessary

theoretical concepts to bring the spectrum to zatbn.

The Practical Language

The first steps toward a foundation for the comroation between a human and
an intelligent agent was the introduction of twgoortant hypotheses in [1]. The first,

the practical dialogue hypothesis stated below.

The conversational competence required for prdctiGogues,
while still complex, is significantly simpler to laieve than general
human conversational competence.

The importance of the practical dialogue hypothesi® focus on those parts of
the language that can be developed with the knayeleand technology of today,
abstracting the complexities of the human languatgewhat is achievable. The second

hypothesis, theomain-independence hypothesssstated below.

Within the genre of practical dialogue, the bulktlbé complexity
in the language interpretation and dialogue managéms
independent of the task being performed.

The importance of the domain-independence hypahsgb focus on building a
dialogue manager that is abstracted from all dospand which can be used and reused
for a variety of applications.

Although both of these hypotheses allow for theellgyment of generic dialogue
systems, they do not provide a common foundatioonuphich dialogue systems and
models can be unified. It is essential that tleisunon foundation conceptualize notions
of communication and interaction. This leads t® fibrmation of a third hypothesis, the

practical communication language hypothesis

www.manaraa.com

73

There exists a language between that of a humawvecsational
participant and that of an intelligent agent. Thasiguage is
capable of abstracting away the complexity of hurtemrguage
while yet maintaining the practical information othe
conversation.

The practical communication language, or PCL, hiyesis is built on the idea
that human-agent communication and interactionb@amodeled as a protocol. There is
cognitive and psychological justification for viewg the interaction of humans and
devices as a hierarchy of protocols [23]. In additspoken language interpretation is
performed as a layer of protocols, as illustratethe left side of figure 3 in chapter 2.

The true practical communication language is ided volatile. This is due to
the definition of ‘practical’ and its ability to atinually evolve and expand. For
example, the PCLs of the past may have been fid#rdogic semantics for command
and control, but recent developments in modelingelhgreatly expanded the vocabulary
of speech-acts. This new vocabulary allows aspéatsprosody for detecting notions
such as sarcasm, levels of commitment or knowleégainty.

The idea behind PCL is to carry aspects of meaamd) attempt to handle the
majority of recognition and tagging at lower levelghe following beliefs are held true in
the pursuit of the ideal practical communicatiomglaage.

* PCL should be abstracted of all region and diadspects of a language.

The goal of the practical communication language ise a unifying language, to
all humans and all agents. For practical purpoaasagent should not have to have
mastery of multiple languages, and every human uagg should be able to
communicate with an agent.

* PCL should be abstracted of all informal, collodustéang and idiomatic
expressions.

It is impractical for every agent to know all ofetmuances of a particular
language. Rather, this information should be abstd before the practical

communication language, so that the agent doelsawat to deal with this knowledge.

www.manaraa.com

74

* PCL should be abstracted of all modality.

PCL should be abstracted of modality, includinguinmodalities such as spoken,
written or gestural; as well as more subtle mogaliich as prosody, body position and
rhythm. It is impractical for all intelligent agento know and understand how to react to
all of these types of modality; however, this imf@tion should not simply be thrown
away. For example, [15] demonstrates that modahty influence the establishment of
common ground. On the contrary, this type of infation should be encoded into PCL
in such a way that the meaning of a particularlydadity is conveyed rather than the
actual semantics of that modality.

» PCL should avoid indirect intention recognition.

Intention recognition pertaining to the meaning tbé language should be
performed for PCL; however, the actual intendedaatpf the meaning should not. The
domain context and agent rationality is requirecpésform this recognition and these
parts of the agent should be separate from theitagegused.

For example, the utterance “John is in the basénstauld state the given fact
rather than remind us that John is in the basenwnto try to get us to go into the
basement to see John, or ever more so, to hintweashould avoid the basement all
together because John is down there. This shatlde handled in the conversational
manager, but rather in the agent. The agent shbaice the ability to use this
information to change the state of the conversatiased on its own interpretation, not
based on direct feedback from some translationtimmc

* PCL should avoid defining exact terms.

Although the core vocabulary should be well defineds impossible to represent
the exact meaning of an utterance; especially, whematural language, the term can
vary greatly by speaker and situation and it ispractical to encapsulate. Even though
identifying semantics for primitive messages aslvesl sequences of messages will

provide a clear and unambiguous message excharigenan should not have to know

www.manaraa.com

75

or follow any of the rules of PCL in order to commate effectively. PCL attempts to
encapsulate the information being communicated raadting to that information in a
rational way. A human participant should not beoralized to mean explicit dialogue
moves, but rather the utterance can mean so méfeyedit things, varying by context,

speaker, situation, mood and so forth.

Origins of PCL

The idea behind a language that exists in betwesnah language and agent
behavior is not new. There are many other exangfissich a language. For example:
application programmer interfaces, or API, suchttes task management interface of
TRAINS; specialized languages such as the artiftiscourse language of Collagen; a
universal communication language such as Interinganguage interpreted into a
machine readable form such as the parameterizemhaepresentation, PAR; discourse
and speech act tags; agent communication langwaga®&n natural language itself.

Translating natural language into a middle repreegem before it is processed by
a software system has been the overwhelming apprdac natural language
understanding, whether that representation is ah AHanguage, a formal logic or
something else entirely. The novelty that the fotatcommunication language approach
adds is in both its adoption of speech and dialogectetheories, as well as its close
relationship to agent communication languagesaddition, PCL based models provide
the computational mechanisms for modeling dialogaesl behavioral aspects of
communication as well as the ability to model adeahconversational capabilities such
as negotiation or coordination. Furthermore, théewioundation of PCL allows many
disparate conversational capabilities to all be ehed by the same system, which is the

thesis of this dissertation.

www.manaraa.com

76

Hints of PCL

Of the examples of middle representations aboveretlare several of worthy
note. [40] attempts to demonstrate the use of rahtlanguage as an agent
communication language. In their experiments, agent generates a natural language
output for another agent to parse and interpregraaagly. However, in most cases these
natural language messages were merely predefiagehstnts that were extremely clear
on their meaning.

[24] introduces the universal communication langudgsed on the universal
network language, which is used to allow commumeoatamong people of different
languages, or Interlingua. Interlingua comes wifibrary of universal words, which are
translatable into every language, as well as miaénd attribute labels. Although the
work demonstrates the ability of an agent to urtdasuniversal concepts and relations,
it is unclear how this leads to change in the dgebéhavior or the modeling of
conversational capabilities.

In their work on the generic dialogue shell and TIRAINS system, [7] refers to
the communication between the dialogue manager taed domain agent as the
interaction act Sidner [52] describes the use of anificial discourse languagedor
collaborative negotiation [51] along with an utteca interpretation module and an
utterance generation module. However, as oppasé¢d],t which places the interaction
acts after the dialogue manager, Sidner placesatteence intention language before the
discourse manager. This leads to the belief thatay be possible to build a practical
communication language on either side of the diaogr discourse manager; or as will
be demonstrated in the next section to build tledodue manager inside the practical
communication language itself.

[57] discusses how discourse models basegbion intentionsor shared plans

such as Collagen, are not enough to account ftwglia coherence in cases where agents

www.manaraa.com

77

do not support mutual high-level goals. The exantpky provide, “Do you have the
time?” does not fit into ether joint-intention drased-plan.

Both joint-intentions and shared plans assume that agents are mutually
cooperative and come together in a conversationse/lpurpose is to achieve a task or
goal. This is not adequate to model situationsre/fieey are not mutually cooperative,
such as when one agent is trying to hide infornmafrom another agent. Thus, these
models, no matter how detailed and complete foir @ugplications, cannot be adopted
and extended into the future of all types of disseubecause they have been designed

fatally from the beginning.

Communication and Behavior

The theory developed through the remainder of dmapter will be imposed
directly upon the communication behavior spectrurhe spectrum is illustrated in figure
6, and future additions will be imposed on thisgdean as is appropriate to convey how

the theoretical pieces are interconnected.

NOILVOINNINNOD
J
A
HOIAVHIg

Figure 6: The Communication Behavior Spectrum

In this particular application of the communicatibahavior spectrum, one can
assume that the human conversational participahto@ion the communication end of

the spectrum, and the intelligent agent will be tbe behavior end of the spectrum.

www.manaraa.com

78

Although, this is not necessarily true in all cmestances, it is assumed for purposes of

this dissertation.

Finding the Glue

In order to create a connection between commupitadnd behavior, a shared
representation or medium is required. Howeverpigethe discussion of the shared
medium itself, it is important to gain an undersliag of the exact placement and bounds
of the representation. These bounds, along wighstmared medium, are illustrated in

figure 7.

5 SHARED
8| |2 MEDIUM i
= c 3 w
F4 3 z m
c m z I
Z e T - D e B
0 3 o <
> Q s (o]
3B |2
o] @ S
4 5 o]

Figure 7: The Shared Medium

On the human, or communication, end of the spectium assumed that all of
the necessary language processing has been pedfdreiere the medium is reached.
This includes potential speech recognition, parsfmgech tagging, parsing and word-
recognition. For purposes of protocol modelings thould include all layers underneath
the task abstraction layer in the left side of feg@ in chapter 2.

Similarly, on the agent, or behavior, end of thectpum, it is assumed that the
necessary reasoning and planning are performedeabevievel of the medium, and that
the medium only need to interface to the agentutlinoconcepts related to knowledge,
reasoning and planning. For purposes of protoameting, it can be assumed that all of

the layers below the task model abstraction layéhé right side of figure 2 in chapter 2,

www.manaraa.com

79

have been performed by the entity interacting thhothe shared medium, or in this case,
the language processing side.

In this way, the lower end of the shared mediurbstracted to a task abstraction
layer, and the shared medium includes the absttaktmodel, the interaction model and
concepts such as commitment, belief, reasoningyletdge and intentions. What is done

with these concepts is performed at a higher lmgdle the intelligent agent.

A Message-Based Medium

There are two traditional paradigms to consider wteveloping an interactive
medium, one based on messages, or packets of tdisnfermation; and one based on
streaming, or continual, information. There is gsylogical justification [23] that this
particular level of interaction may be viewed detety. Furthermore, dialogue
managers, agent communication languages and cuageEnt technology is based on
discrete information processing. Therefore, a nimaditional message based approach
will be more beneficial to current research.

A messagés a discrete collection of knowledge and inforimrabeing exchanged
or processed. In the practical communication laggya message is most intimately tied
to an utterance on the communication side, or awehal action on the agent side. How
the message transforms between an utterance atdalsehavioral concepts is the work
of the next and subsequent sections. The remaiofdénis section will discuss the
message itself, first by covering the meta-infoiorator the external perspective of a
particular message, then the message contentdyeointernal perspective that acts

atomically as the shared medium.

Message Header

The informational data describing the external pecsve of a message, referred
to as the message header, is outlined in figure he message header includes

information that can be used to describe eithartsrance or a behavioral concept.

www.manaraa.com

80

Generator
Addressee
Observer
ContentDescriptos
Interpretéion Stack
Content

Message

Figure 8: Message Header

The generator of the message represents the particihuman or agent, which
generated the utterance or concept. The addrespeesents the participants that the
message was intended for, while the observer reptesll of the participants that were
able to receive it. Expressiveness is introdugedllmwing the values of these fields to
contain a first-order logic expression that notyomcludes the various participant
identifiers, but also various extended conceptsnfrmonfidence ratings to uncertainty
factors. For instance, it may not be obvious whoegated a message, or if a particular
agent was able to receive it.

Content descriptors allow further knowledge to baweyed about the message
itself. For example, if an originating utterancasain the English language, it would be
noted in the content descriptors, and the intenéedivers would contain expressions
that the participant may need to be aware of thglisim language in order to have
understood or received the message. Further gessrican account for the level of
language and vocabulary, e.g. fifth-grade levebmgosed to fluent, as well as a variety
of modalities, e.g. if the message was seen odhead the agent can see or hear. This
may even include such detail as which words or esgions the participant may or may
not have known.

Although the content descriptors allow for an imlioéee amount of detail and

expansion, they will not be used for the purpodethis dissertation. Furthermore, for

www.manaraa.com

81

the purposes of the Stratagus agent, the genesagdher the player or the agent, and the
receiver and observer fields are the other pagrdipthe agent or the player. In addition,
it is assumed that messages are received andigadge that is understood.

The interpretation stack holds all of the inforroatiobtained at all levels of
translating the original perception, such as sotext, or movement data. If created on
the behavior end of the spectrum, then the inteaposnn mechanism holds the rules,
intentions or other concepts that were used toldpvilae concept. The interpretation
stack can be used within the system along witreddack mechanism, for improving the
accuracy of the interpretation mechanisms onceathaal meaning has been confirmed,
as well as to allow various messages to be reirgeg if there is a misinterpretation
detected.

For the purposes of this dissertation, the intégpiens of various utterances have
been directly input into the system and the inigdion data has not been collected.
Furthermore, the feedback mechanism and its dewelop are natural language
processing and thus beyond the scope of the rdsbarein.

Finally, the content portion of the message repsséhe knowledge being

exchanged and processed. The content will be ibesicin more detail shortly.

Conversational Paradigms

The descriptive portion in a message of the practommunication language
allows various social aspects of the conversatwibe defined for later expansion of
conversational paradigms. The Stratagus agentidedcin this dissertation falls only
into the single human to single agent paradigm,thednanager / assistant relationship.
However, future work may introduce the participtyge paradigms of table 7 and the
sub-paradigms of table 8 and more.

From the perspective of the intelligent agent,ltbean-human paradigm applies

to the observation of humans interacting with onetlaer. Through observation, the

www.manaraa.com

82

agent can learn tasks and procedures as well agrmsational obligations and protocols.

The agent-agent paradigm pertains to the commumicatmong agents, including agent

communication languages and such research ar¢las ssmantic web.

Table 7: Human-Agent Conversational Paradigms

Human Participant Agent Participant
Human Participant Human-Human Communication Humagesk Communication
Agent Participant Agent-Agent Communication

Table 8: Cardinal-Variant Human-Agent Single-Cosation Paradigms

Single Human Multiple Human
Single Agent Human-Agent Communication Humans-Ademinmunication
Multiple Agent Human-Agents Communication HumanseAty Communication

In human-agent interaction alone, many factorsh&mrtsegment various sub-
paradigms. For example, consider just the carndynal human or agent participants as
illustrated in 8. In the simplest case, a singlenhn and a single agent, further sub-
paradigms include the manager/assistant, studacie or coach/player relationship, or
perhaps a relationship among peers. Systems inglual single human and multiple
agents are often used for simulation and trainiag, well as the push for the
interconnectivity of various consumer devices. t8ys including a single agent and
multiple humans often apply to mediators, discus$gaders, team coordinators or even
referees. Examples of multiple humans and mult@ggents include the semantic web,

online marketplaces and teamwork applications.

www.manaraa.com

83

Conversational paradigms can even extend beyogtestonnection groups, such
as the IDOCS system [62], which is an online callalive tool in which a human
participates through an agent that communicateds etlier agents, each communicating
to their own human. In addition, paradigms cant@onmultiple layers or segmentations,
such as a conversation between two viewers disay$si ongoing conversation among

characters in a television show.

Message Contents

Now that the various external perspectives of tlessage have been examined
along with their implications to the future modejirof practical communication
languages, it is time to delve into the internakpective, or contents of the message, that
which is the foundation of a shared medium betweenmunication and behavior.

The foundation of the practical communication leaxggl is based upon an
abstraction layer in which a human can abstractétails of a problem into various core
concepts that can then be manipulated and opetgted during communication and
interaction with an intelligent agent. The mearawgion concept, described in chapter 2,
provides the basic vocabulary blocks of these qutsceUnlike speech acts, which are
performative based, meaning-action concepts car tefconcepts in the conversation,
relationship or paradigm, often encapsulating cptea the domain. The vocabulary of
meaning-action concepts is broken down into twem sl layers.

The first layer is the core concepts of the panadigFor example, the task-
oriented paradigm may include domain-independentepts such as ‘action’, ‘goal’ or
‘object’. Various core concepts may be well ddssdi. For example, an ‘action’ may be
concrete as in the case of a specific action pesdror ready to be performed, or generic
as in the case of the notion of some form of amact In addition, they may include

properties such as duration, cause and affect,adetbgy and so forth.

www.manaraa.com

84

Core concepts create a needed separation betweatothain-independent and
domain-dependent aspects of a message. In thiaditsadomain, an ‘action’ may be
further defined as gathering resources, buildimgifees, training personnel and attacking
enemy targets. This separation allows the donmadependent aspects to be modeled,
reasoned and processed, transforming the messagegnecommunication and behavior.

The second layer adds operators to the core cancefitese operators may be
tied to communication, relating directly to speedts, or they may be tied to the
behavior or execution end of the spectrum. Opesabmm the communication end
include such acts as the proposal or rejectiomadaion, assertion of a mutual goal or
the request for information. Operators from théawor end include such acts as the
performance of an action, the evaluation and adopif a mutual goal or the seeking of
information.

In this way, a human conversational participant @atnoduce various core
concepts through performative-like operators. €heperators are transformed to
behavior-like operators that the agent can thesore@ver and execute. The agent can
provide resultant behavior-like operators as feekpahich can then be translated back
into performative-like operators to be communicatedthe human participant. The
transformation between the different styles of apmis is the topic of subsequent
sections.

The practical communication expression, represgrttie contents of a message,
or the guts of the utterance with respect to comaatiion, is contained in a single root
operator. However, this root operator may contmg number of branching concepts,
which provide the general structure of the messamgkits contents. This representation
allows for conjunction, where a particular uttercan carry multiple meanings. For
example, “Alright, what do we need to do?” captusesh the essence of agreement and
the start of a plan. This representation alsoaallfor disjunction in which a particular

meaning is ambiguous. It also allows the expressioa variety of complex utterances.

www.manaraa.com

85

In the Stratagus domain, this may include utterarstech as “upgrade all soldiers” or

“For each soldier, if there is any enemy soldiearbg then attack the enemy soldier.”

Vocabulary structure and organization

As opposed to a speech act, a meaning-action cbmogponly has a general
categorization, but also carries a signature, caiggg the contents of the performative.
For example, there is a distinction between the@@sal of an action, and the proposal of
a goal. Furthermore, meaning-action concepts mdedl into layers according to the
relationship model, and may be nested in definitidgtor example, in the task domain,
one can query the justification for the rejectidran action.

Meaning-action concepts are also defined in anlogical format that allows for
rollback to known concepts. For instance, a caupteposal is a child of proposal. The
distinction of concepts is made for intelligent jm@l modeling systems as well as for
generation mechanisms, such as “instead why doa&t.ivor “nah, how about...” As
another example, confidence ratings may vary. é&le, “I'll get on that right
away!” may correlate to a commitment with a confide rating of 100% while “Well, |
don’'t know... I'll see what | can do” may correldgtea commitment with a confidence
rating of 15%. The determination of these confaieratings is left to speech recognition
and user modeling. If a particular agent impleragoh did not know how to handle
confidence ratings, then it may treat both as antpmmitment that will commit to what
IS in context.

In addition, the ontological organization allows fine mappings of meaning-
action concepts to a root dialogue tag for the npomtion of dialogue tag-sets and
associated benefits into a dialogue manager. Theggings will provide useful when
the translation mechanism is layered, as will Isewbsed in subsequent sections.

Following the nature of the complexity of humandaage, the vocabulary space

of meaning action concepts will explode. Usingoamological hierarchy is essential in

www.manaraa.com

86

the management of future vocabulary spaces. Huontlre, an ontological structure
provides decoupling for the dual evolution of thenduage interpreter, the agent
implementation and the practical communication legge processing. This allows the
various pieces to be evolved separately as thepsalzion of what is deemed ‘practical’

continues to expand.

Shared Medium Semantics
This section will provide the semantics for the mieg-action concept based

shared medium within the practical communicatiorglaage as described above.

Design Goals

Deciding upon the mechanisms and formalizationooicepts is a non-trivial task.
Many knowledge representation formalisms of machimelerstandable concepts are
readily available. However, the design criteriatfos formalism must be decided before
any educated decisions can be made upon which &viendto build. The design goals
are outlined below along with the decisions thatehaeen made based on those goals.

* Due to the complexity of the human language andapeally expanding
capabilities of intelligent agents, the represenmtashould be considered quite
volatile and leave mechanisms for evolution antheshent.

The individual concepts should each be expanddbleraging one another.
Therefore, a class-based approach to modeling wsaromncepts has been adopted,
leveraging inheritance and other relationships tloe easy expansion of concepts.
Placing the concepts themselves into a hierarclhytawonomy, and requiring that
implementations are able to map back to parensetaghrough abstraction allows for the
two sides of communication to be implemented battaltel and independently. As the
language encoding mechanism understands new phaasemeanings, it may expand
upon previous concepts. The implementation may #u/ance to incorporate these new

concepts. As the implementation expands and addgepts, various encoding

www.manaraa.com

87

mechanisms, such as languages, idiomatic dialectparsonalities, can be expanded in
time to incorporate the new concepts.

» Dialogue tagging and markup as well as initial stigations into representations
have revealed that the state space of concepthamgroperties can quickly
explode.

Therefore, PCL should have a means of organiziegehconcepts as well as
incremental or grouped expansion upon these caoscéptganizing these concepts into a
taxonomy and allowing relationships between thecepts will greatly assist in the
organization and containment of the concept space.

* PCL should be designed separate of any agent ingpltion. Any agent
implementation supporting the TCL language shoeldlle to utilize it,
regardless of its design.

Because PCL is itself a language, it can be ind#gen of any agent
implementation. The knowledge communicated in Pould not imply forward,
backward or heuristic chaining. The knowledge #hde easily translatable into logic-
based, rule-based or class-based implementatidhg. agent should be treated from a

black-box approach, defining only how the agemnt isiteract with PCL.

Core Concepts

Core concepts represent the first layer of theesharedium. There are two types
of concepts as illustrated in figure 9.

The most important aspect in understanding the coneepts is the distinction
between abstract and concrete concepts. Abstacepts represent typing information,
describing an entire class of concepts while cdaci@ncepts describe individual
instantiations. For example, the idea of a genaljective is an abstract concept where
various specific objectives such as gathering meseurces or eliminating enemy targets

are concrete concepts.

www.manaraa.com

88

Each abstract concept is given an identifier, winikes it unique from all other
abstract concepts. Similarly, each concrete cdnisegiven an identifier that makes it
unique from all other concrete concepts. A comcosincept must be the implementation
of a specific abstract concept. The concrete qanisegiven an abstract-identifier that

specifies this relationship.

Identifier
AbstractConcept Signature
Relationshps

Identifier
ConcreteConcept Abstractldentifier
Compositio

Figure 9: Core Concepts of the Shared Medium

There are important relationships among abstractejuts that allow them to be
organized in an ontological format. Th&extension-ofrelationship allows various
abstract concepts to be further refined as the hgrodevs in complexity. For example,
the ‘counter-proposals-extension-ofproposal’, allows the counter-proposal to be atide
for systems that can distinguish it from a genpraposal. However, systems that do not
know how to handle or process counter-proposalstneay it as a proposal.

Another important relationship of abstract conceptsomposition, or théas-a
relationship. This allows abstract concepts totaonreferences to other abstract
concepts, which may be used during processing mithe discourse model. For
example, an abstract procedure concept may be gadpf actions and may include an
objective. Various properties of abstract conceats also described using this

relationship. Thesignatureallows the individuahas-arelationships to be distinct by

www.manaraa.com

89

giving an identifier to each relationship. In aduh, thehas-arelationships may also be
designated to be required or optional as well a®wecardinality possibilities.

The only relationship a concrete concept is allowisdthe composition
relationship. Composition allows the procedure ‘gdthering resources’ to be the
concrete actions of ‘moving to the resource’, ‘mmithe resources’ and ‘delivering the
resource’.

All compositions are associated with an identifieat makes that relationship
unique to the other relationships of the same qamnceFurthermore, some of the
composition relationships in a concrete conceptresithe same identifier with the
composition relationships in their root abstrachaept. This correlation preserves the

signature that is shared between the composititsoiin concrete and abstract concepts.

Concept Operators

Concept operators represent the second layer odhtheed medium. Similar to

core concepts, there are two types of concepttuasated in figure 10.

Identifier
AbstractOperators; Signature
Relationshps

Identifier
ConcreteOperatorg Abstractldentifier
Compositio

Figure 10: Core Concept Operators of the Sharedumed

The core operators are broken into abstract andretmoperators. Operators can
be nested. Similar to core concepts, the abstyaetators represent typing information,

describing an entire class of operators while oetecroperators describe individual

www.manaraa.com

9(

instantiations. In addition, both operator groaps also given identifiers, unique within
their respective groups.

As with abstract concepts, ths-extension-ofrelationship can also be found
among abstract operators. This relationship all®asous abstract operators to be
further refined as the ontology grows in complexityfror example, the relationship
‘commitment-with-confidence-ratings-extension-ofcommitment’, allows a confidence
rating to describe the level of commitment a gigencept may have. If a system does
not know how to deal with this added informatidmer it may treat the operator as the
commitment operator.

The signature of an abstract operator allows theraipr to describe to which
abstract concepts the operator applies. The sigmas composed of a set of unique
identifiers, each identifier including a referertoean abstract concept or set of abstract
concepts. The identifiers are used to distingaisétract concepts in the event that there
is more than one abstract concept type within igp@asure. Each signature identifier also
includes a property stating if the given identifierrequired or optional. In addition, in
the case of a set of abstract concepts, the cancepy or may not be ordered. Only
abstract concepts may be used in the signatutbeasperator itself is only abstract.

A concrete operator must be the implementation specific abstract operator.
The concrete operator is given an abstract identthat specifies this relationship. In
addition, each concrete operator is given compmositwhich is a set of concrete
concepts. This set includes identifiers, which nugpdirectly to the signature of the

corresponding abstract operator.

Dialogue Models

The process of transforming performative-orienteglaning-action concepts to
behavior-oriented meaning-action concepts is peror by various rules within the

dialogue model. Without a dialogue model, the nmggaction concepts would serve

www.manaraa.com

91

merely as an application programmer interfaceis the introduction of these meaning-
action concepts as well as their respective trénslaand processing rules that is the
novelty of this dissertation in addition to the fal methodology surrounding these

concepts and rules.

SHARED MEDIUM

} DIALOGUE MODEL } >

NOILVIINNWWNOD
J
HOIAVH3E

Figure 11: The Dialogue Model

The dialogue model is placed directly inside thared medium as illustrated in
figure 11. This restricts the dialogue model tem@pe only on the core concepts and their
operators and avoids any language processing avimehl reasoning. The dialogue
model is not only capable of interpreting and resliog to various speech and
behavioral acts, but it is also capable of modelingh-level interaction including
negotiation, explanation, mutual planning and more.

This is performed through understanding the retstiips between the various
concepts and operators and utilizing policies t&c#p these relationships. For example,
upon the proposal of a goal, the agent should at@kvhether or not it should pursue the
goal. If the evaluation leads to the adoptionhef goal, than the agent conveys that it has
accepted the proposal, otherwise it should contay the proposal was rejected. The
agent may provide a justification along with thgegon if pertinent.

In this simple example, a proposal is evaluated @ittter accepted or rejected,

depending on if the goal was adopted. Howevergiaenple can quickly get much more

www.manaraa.com

92

complex when considering the following variatiorishe proposal itself may demonstrate
misinformation on the behalf of the generator thatuld result in statements that
neutralize the proposal. If the proposal was matemstood, a sub-clarification dialogue
in resolving the misunderstanding should resulirttiermore, if the proposal intended a
specific consequence that would be achieved thr@udletter course of action, then a
counter-proposal may result. A counter-proposay ralBo be used for refining the
proposal during negotiations, to reach a comprofieisagstance.

As can be seen, even when dealing with somethingiraple as a generic
proposal, there is a variety of rational ways aenagcan react. Therefore, a generic
dialogue model is needed which can account forethvasiations through a simple and

deterministic approach.

Message Processing

As illustrated in figure 11, the dialogue modekitiated directly in between the
communication with a human participant and the lrmal operations of an intelligent
agent. The dialogue model transforms performativented messages and behavioral-
oriented messages.

Generally, when a human participant produces ararite, various speech and
language tools are used to transform that utteramoea message. From the perspective
of the dialogue model, the message is simply predusy that language end of the
spectrum. Similarly, when there is a change ineim@ronment or in the internal state of
the agent, the agent may produce a message intéadédte human participant. From
the perspective of the dialogue model, the messagienply produced by the behavioral
end of the spectrum.

The goal of the dialogue model is not to simplynsfar the message from one end
of the spectrum to the other, but reason aboutreadt to the message according to its

knowledge of the context, and various discourse/entions.

www.manaraa.com

93

Discourse Reasoning
The dialogue model developed in this dissertatioliows the idea of rational
communication by leveraging a reasoning systemréagss messages. This reasoning
system utilizes discourse rules and knowledge tdehobligations and policies as well
as a structured context system that records aokistthe history of the interaction as well
as the focus, intentions, interpretations and mai® of messages in multiple

conversational threads.

Discourse Structure

The discourse model is composed of three primagggs. The first piece is the
discourse structure, which is capable of trackingltiple conversations, recording
interpretation history, and monitoring obligaticarsd contexts.

Messages can only be generated by a participahticonversation. The human
generates a message through interaction, whilagleat typically generates a message
through reasoning. Upon the arrival of each messatg the system, all of the top-level
concepts in the messages signature along with ahycencepts as provided through
composition are all added to a collectionStfared ConceptsEach is given an identifier
if not already present.

The operators of the message will invoke variouesruo be fired calling
subsequent operators with their concepts. As eath is fired and concepts are
transformed or created, these are each added t8haeed Conceptaccordingly. In
addition, the history of interaction that leadsetach concept is recorded inShared
Concept Graph The introduction of the shared concept grapbnis of the novelties of
this dissertation. The shared concept graph hlbkl&ey information for reinterpretation,
back tracking, correction and many other convevgati capabilities as will be described

later. In addition, &hared Concept Ligirovides the most recently added or addressed

www.manaraa.com

94

concepts. This is useful in searching for relatedcepts that are in the current focus of
the conversation.

Operators are also recorded in the Shared Conagth@oth through their ties
to the various concepts as well as through diseowtsligations. When the agent
produces a message that expects a reply, the opafathe message is added to the
Obligations The next message from the other participantshiscked against the

obligations to see if it is a reply. If it is deecha reply, the obligation is removed.

Discourse Operators

Only operators, as opposed to concepts, may beasstmp-level facts within the
reasoning engine. There are four types of opesaised within the discourse model.
More on each rule can be found in their correspunpdection in the partial TCL
language definition provided in appendix A.

Interactive operatorsnfluence concepts toward communication and ictéva.
These include operators that interpret or gendrdggaction such as text. Top-level
interaction operators are generally shared by rti@e one participant.

Agent operatorgepresent actions taken internally by the agéitese operators
are generated through transformations of interactwperators. The operators lead
directly to reasoning within the agent, which thieads to the production of new
interactive operators.

Helper operatorsnever reach either participant. They do not ademwith any
rule, or any outside concept or operator. Furtloeenthere is only one definition
allowed for each helper operator. In additionpkeloperators always return a value. In
this way, helper operators can be viewed as nonaaaed inline functions.

Helper operators work directly with the structufeeoncepts as well as the shared
concept graph. They detect structural overlap$ s collisions or containment, and

create new concepts through the merging or inflaefanultiple concepts.

www.manaraa.com

95

An exception to the traditional functional rolehalper operators is that they may
also be used as a placeholder to hold informatiarbligations until a future rule can use
this information. In this way, the helper operatoterminated as a fact to be used by
future operators.

Macro operatorsare similar to helper operators in that they neaeach either
participant, or interact with any outside concepbperator. However, macro operators
often are overloaded and produce new interactiraiprs. Macro operators help to
detect various operator signatures and cause @ehamesultant operators based on that

signature.

Discourse Rules

Discourse rules translate among the various messaganipulate the shared
concept graph, and create and destroy obligatidmeugh multiple threads of
conversation. Discourse rules generally affect ii@st recent operator and do not
interact with one another directly, but rather froame operator to the next forming a
branching chain.

A discourse policy is a collection of rules thateract with one another towards a
specific purpose, such as modeling a conversaticagability or behavior. These are
often organized both in layers and in groups.

Every discourse rule has three main parts asndited in figure 12. Theperator
specifies the operator that will trigger the rulee conditionsspecify what must be true
for the rule to fire, and theesultsspecify the operators that will be generatedefrlie is
successful. Each section may carry a completeatiga structure of a concrete operator
including concepts. Variables may be assigneadovidual concepts that are bound at
the time of rule firing. If there is a collisionith the signature of the operator or any of

the conditions, then the rule fails.

www.manaraa.com

96

Operator
DisrouseRle Conditions
Results

Figure 12: Discourse Rule

Multiple variables may be specified in each operafahe rule, and the variables
may be shared among multiple operators. Variatvlag only be bound to operators or

concepts.

while execution stack is not empty
pop operator (Oper) off execution stack
for each rule (Rule) in dialogue rules ordelog priority
if bind variables of Rule-operator @per are not successful then next rule
for each operator (Condition) in runditions
if bind variables of Conditionrist successful then next rule
if execution of operator Conditiis not successful then next rule
for each operator (Result) in rule-tesu
bind variables of Result
push Result on execution stack

exit for each

Figure 13: Dialogue Model Execution

Once an operator is defined, complete with sigmatia set of operators
representing a condition may be defined. Conditperators may only be obligations,
concepts in the shared concept list, helper opesataacro operators or agent operators.
The agent operators involved in the condition sectio not generate, but rather allow

the agent to decide whether specific conditionseHzeen met.

www.manaraa.com

97

If all of the conditions have been met then the extecutes, or fires. This means
that the operator that triggered the rule is rerdpwaad the set of operators in the result
section are introduced. These introduced rulebtngiger and fire other rules in their
own way, leading to a sequence of operators tlatlained, branching at any particular
rule.

Only one rule may fire for each operator. If thexenore than one rule, then the
rule with the highest priority which has all of @¢enditions met, will fire. If no rule fires,
that the operator is considered to be causing aspecified transition’, which is
considered an error. The described algorithmustilated in figure 13.

In example, consider the rule from the human ofalCL as illustrated in figure
14. This rule states that if an order is receitret is an action; it should be evaluated
with the intent to execute the action. Typicallyan incoming message is the order
operator of an action concept, this rule will fir&he action concept will bound to the
variable *?A’. This rule will remove the originarder message and replace it with a

messsage for the agent to evaluate the action pbaserovided through “?A’.

Operator= (Order< ordersAction : ?A >)
FollowOrdes < Conditions= None
Results= (#EvaluateAtion < action?A > < intentexecute>)

Figure 14: Follow Orders Rule

The Interaction Model

The dialogue model introduced in the last sectiautlieed the rational
transformation between performative-oriented andhabmr-oriented meaning-action
concepts. As the dialogue model represented teenal mechanics that orchestrate this

process, the interaction model defines the genetataction patterns found within this

www.manaraa.com

98

orchestration. The introduction of the interactimondel is one of the novelties of this
dissertation. The interaction model provides thenfiation for the formal methodology
that allows the verification of the soundness of thalogue model as well as the

validation of the dialogue model against actuaMessations as well as their properties.

SHARED MEDIUM

| DIALOGUE MODEL } -

N

‘ INTERACTION MODEL ‘

HOIAVH3gG

NOILVOINNINNOD
J

Figure 15: The Interaction Model

The interaction model as illustrated in figure 15, is placed directhside the
shared medium, restricting it to operate only oa tore concepts and their operators.
The interaction model is separated from the diadogwdel as well as the stream of
messages between the communication and behavies sidthe spectrum. It used only
for the verification and validation of the dialogoedel.

The interaction model is automatically generatedtriaging all of the possible
routes of interaction operators, the performatitydesmeaning-action concepts, within
the dialogue model. This interaction represents dbllection of the various possible
sequences from the communication side of the gpactnd therefore, it strongly
resembles a protocol validation suite. Becauseb#t®avior of an agent cannot, and
should not be included because the agent is ab=trate behavior end of the spectrum
must also be abstracted. This leads to weak-cowfioce of the dialogue model. Future
work may entail including this agent-verificationurthg the construction of the

interaction model to produce stronger conformaestst

www.manaraa.com

99

The interaction model itself includes several layavhich range in conformity
and properties. These layers are introduced byingrthe condition mode during
generation. The condition mode determines whichditmns will be branched and
which conditions will be checked, as will be deked. These layers allow the paths
within the interaction model to expand and retrétog, bounds of which are used during

the debugging process of conformance failures.

Interaction Model Generation

for each rule (Rule) in dialogue rules order bypty
Operator = Rule-operator
for each operator (Condition) in Rule-coruhts
if Condition is type Obligation
add Condition to Restrictions-iQhations
if Condition is a Shared Concept
add Condition to Restrictions-Cepts
if Operator* (Link) exists in Interaction-Paths
add Link to Restriction-Priority
for each operator (Result) in Rule-results
add link OperaterResult to Interaction-Paths

Figure 16: Generation of Interaction Model

The generic algorithm can be seen above in figGreBvery possible operator-to-
operator transition is recorded within an inter@ctgraph. However, there are a series of
checks to label the transitions in specific wayhis labeling creates the layers within the
interaction model.

The weakest interaction model allows all conditibm$ranch in all possibilities,

allows all rules to fire without noting priority gierences and does not check either the

www.manaraa.com

10C

shared concepts or obligations for success. Tihsva every single transition to be
added and is the biggest of the interaction modelsdels are then restricted by allowing
obligations to be tested, tracking shared conceptsadding priority preferences or a
combination there-of. The strongest interactiondetoconsiders every possible

conditional check.

Interaction Verification
The verification of the dialogue model is perforndhging the generation of the
interaction model. Any paths that are terminatethout reaching a message can be

revealed which represent under-specification indiaéogue model.

Interaction Validation

The interaction verification process resembles itbmtive verification process
discussed in chapter 2. This process is followgdapplying the interaction model
against known annotated corpuses of dialogue segaenlf the dialogue sequence is
covered within the interaction model, then thattipalar sequence is validated.
However, if the dialogue sequence is not preséet; the interaction model should be
examined to see if it could be expanded to inclidecases that the dialogue sequence
reveals. These additions are made to the dialotpael and a new interaction model is
generated and tested against the corpus. Thiggsaan be iterated until the variations
within that corpus have been accounted for.

If a given dialogue sequence is present withinviieakest interaction model but
not present in the strongest interaction modeh thepractice it has been a problem with
priorities, reliance of shared concepts or a mgsobligation as indicated by the
differences between the two models.

In addition to validation against known dialogueqeences, various image
protocols can be created through abstracting thi®ws performative-style messages

using the ontological hierarchy of the operatoffiese image protocols can be used for

www.manaraa.com

101

validating nondeterminism, probabilistic-determmjsmultiple conversational threads,
delayed response, interruption and adaptation; afl as various conversational

capabilities such as clarification, re-interpretafinegotiation and so forth.

Practical Communication Language Methodology

Following the general process for creating a diaégiodel, the conversational
capabilities are recorded in a dialogue sequendeis sequence represents the design
requirements for the system. Formal specificatiares then introduced by adding the
necessary rules to model this dialogue sequence.

The core concepts and operators provide an adegpatsfication language to
formalize these dialogue sequences as design eagints. Furthermore, the verification
and validation techniques defined in this sectiawvigle effective to check the
requirements against these definitions. Theretiwe practical communication language
techniques outlined in this chapter provide a maohmgy for designing and verifying

dialogue systems.

Synopsis

This chapter continued along the communication-bena spectrum by
developing the necessary theoretical concepts. s Titludes defining the practical
communication language, as well as meaning-actancepts and the shared-medium,
message based interaction, the dialogue model ladnteraction model. This has
provided the foundation for the novel contributioofs this dissertation, the practical
communication language methodology. The next @raptll continue this foundation
through its implementation within the task-orienthainain, and the subsequent chapter

through its implementation within Stratagus.

www.manaraa.com

10z

CHAPTER 4
TASK COMMUNICATION LANGUAGE

Due to the complexity of the practical languageraduced in the previous
chapter, a much simpler problem of task-orienteaglaage has been the focus of
implementation. Task-oriented language is defiresd language pertaining to the
planning, management, monitoring and executiorasks and procedures. This chapter
introduces the design and reasoning behind thedasknunication language. A partial

TCL language definition can be found in appendix A.

Task Concepts and Operators

The theory developed in the last chapter discussedformation of language
through a set of concepts and operators on thoseepts. However, before the
necessary concepts and operators are introducedyrtdiblem of properly representing

and organizing a task-oriented language will beeskid.

Representing Task-Oriented Concepts

TCL has one major goal in that it must be rich eioto store the complexity of
action expressible in natural language. Very fetioa representations take into account
the linguistic information of natural language mstion [25]. Many simply map input to
recipes in a plan library, rather than allowingstlnguistic information to morph the core
recipe into something new and interpretable. M&mes, the linguistic information
points to methodology that suggests the purpos¢htmaction, which demonstrates the
intentions that influence the actions and goalthefagent.

There has been extensive work in translating nhtlaaguage to action
representations [6] [37] [25]. However, these espntations do not take speech acts and
dialogue modeling into account. They are not chpab readily incorporating notions

such as negotiation or persuasion. Therefore, & hgbrid language must be

www.manaraa.com

10c

constructed; one that follows the path of the pcattommunication language but yet is
also able to incorporate the expressive conceptsdfavithin task-oriented domains.

TCL will map directly to a set of core conceptghich are then expanded
through linguistic expression. Any system capatflesing these extensions may do so,

but those not yet capable will operate directhtlmacore concepts.

Representation

Core domain-dependent concepts follow the objectigliog approach where
each concept in the domain is modeled as an obfeath object has a set of associated
properties and values, which may be terminal or to@yanother object. Objects also
have a set of relationships, which associate th@émather objects in meaningful ways.

For instance, in the Stratagus domain, if we wambekihow how much health a
soldier had, we would query for the health propeftthat particular soldier object. If we
wanted to know which units were inside a particukanicle we would query the inside-of
relationship of the corresponding vehicle objethis enables the ability to put together
semantics to access almost all important domaiaifsp&nowledge.

In an effort to expand the knowledge representatepecialized concepts are
introduced for both values and relationships. €hesnsist of AND, OR, NOT, IF,
ELSE-IF and ELSE. The AND and OR concepts allosetwof sub-concepts or values to
be combined together into a group for easier remtasion and referencing. The actual
meaning of these concepts is dependent on itsereferand usage. For example, when
an AND concept is referenced as a goal, then athefbranches of the AND concept
must be met in order to satisfy the goal. Simylaifl the OR concept is referenced as a
procedure, then any of its branches will satisgyélkecution of that procedure. The NOT
concept is the complement of its reference, andIifheELSE-IF and ELSE concepts

follow their respective programming ideas.

www.manaraa.com

104

Messaqge Validation

TCL is checked against a schema to ensure thallawfs the concept hierarchy
the schema defines. However, the validation sitaglg goes so far in proving the
correctness of the concept. Additional verificatisteps may be required by an
implementation but is not addressed by the TCL &éaork. Certain human utterances
and gestures may also generate incomplete or ewgaflicting semantics, however
because this is possible in the human languaghoiild not restrict these utterances from
TCL. Instead, the agent implementation is forced deal with such utterances

accordingly.

Task Concept Construction

Although a number of TCL concepts and operators reok included in this
dissertation due to length considerations, a gderguage specification is provided in
appendix A. This section will provide a brief inttuction into some of the core concepts
and types, providing a solid foundation for undemnsling the TCL framework. Readers
are referred to the appendix for a more comprekensonstruction of the TCL shared
medium.

As previously discussed, the knowledge represematollows a scheme of

concepts and operators with associated valuesegrep and relationships.

Core Types

As with any language, a few core types are requioedegin the foundation of
TCL. TheExpressioruses the values of concept parameters or otheeg{pn concepts
through any number of specialized aggregators dmedke above. An expression
generally only returns a truth-value and does movide common properties other than
structural composition. Expressions may also de#h abstract notions to generate
formulas applicable to any concept. Expressiorcepts are typically used in evaluating

IF and ELSE-IF concepts.

www.manaraa.com

10t

The Stateconcept refers to a particular concept’s parameterexpression or an
aggregation of both. States represent general leaigw provided through the interface
of known values, whether internal or in the envmamt. A state also generally returns
only a value and does not provide common propedilesr than composition. A state is

satisfied if it matches a value or a particularafetalues.

Entities

Several important entities exist within the tasleoted domain. Typically, there
is some notion of a@bjectthat refers to an object within the environmeni, &lso as in
[37] can also refer to non-existent ideas. Theowerproperties of an object are domain-
dependent. In addition, there is notion ofAstor. An actor refers to an object within
the environment that is capable of performing atioThe actions an actor can perform
are domain-dependent. An object may also lResourcethat is to be measured and
monitored. Sometimes a resource can refer to écpkar amount of a given element
available while other times it can refer to a spediool or device. Resources are

typically application-specific.

Goals and Objectives

In a task-oriented domain, there is a notion ofoal @r objective that must be
carried out to complete a task. Multiple resediells present many conflicting insights
on how a goal is to be represented. This workhgite to accommodate most of these.
The core set of [12] has been adopted and expanu=d

First is theGoal concept itself, which represents something thatlmachieved.
The goal concept has a great number of propeitigsall add to its definition. Most
important of these properties is the godlgpe which reflects how the goal is to be
satisfied. The satisfaction requirement of thel gogypically referred to as theesult

TCL developed in this dissertation accounts for thikowing goal types: In

Achieve the goal is to achieve a particular result. ah e either an action to be carried

www.manaraa.com

10¢€

out or a state of the world to satisfy. In direpposition isAvoid which is the goal to
avoid a particular state or action. TCL representsstraints in this wayAvoid goals are
typically continuous within their contexts.

A Maintain goal type tries to maintain a given state. Angtithe state is
unsatisfied then it is to be achieved, if it isidetd then the agent is to plan to keep it
satisfied. Along the same linesRseserve which is identical tdMaintain, except that if
the state is ever unsatisfied, then the goal igedpr abandoned.

A Ceasegoal type is to undo a particular result or retiehnegation of the result.
In the case of a state, the goal is to unsatiséystate. Th&estgoal is to test a given
condition but not necessarily achieve it if it issatisfied.

These types make up the various types of objectilvas exist within a task-
oriented domain. TCL models almost all of thesecepts as extensions to the core goal
concept. This core concept also has a numberogiepties as well.

First, each goal has a@rigin, which states if the goal was provided by the
system, the agent, another user or perhaps argithéor some reasoning. Also, the goal
has aSynthesisyhich describes how it came to be, whether statguicitly or through
inference. Both the origin and the synthesis prtgee of a goal are provided by TCL
through the shared concept graph.

A goal may have any number 8ub-goals a collection of goals that must be
satisfied in order to satisfy the goal. Each soblg Parent is the owner of the
collection it is in, if applicable. Furthermoreaat goal can have Rriority, Method
Scope Applicability, Composition State Progress Estimatesand more. However, due

to length considerations, is deemed beyond theesobthis dissertation.

Action
The goal and the action are the most important eotscin a task-oriented

domain. Moreover, they are also the most compl&ke action concept developed in

www.manaraa.com

this dissertation attempts to maintain the natdasguage concepts of [25] while
maintaining the practicality of [6] and [37]. Tleers one core abstracted-action type,
which reflects on all actions. Then there are important sub-types: the recipe, which
represents the un-instantiated action; and themcwhich represents an instance of a
particular un-instantiated action.

This section will not go into too much detail oretaction concept due to length
considerations. Rather, the intent of this sedsai provide an adequate synopsis of the
task-oriented domain for understanding of how trectical communication language is
applied.

Most importantly, all actions requifearticipantsthat define who is performing
the action, who is assisting in the action, whgecis are being performed on and what
objects are being used. Each of these is repexsémta respective field. Furthermore,
all actions require an applicability that describ@svhich state the action applies, along
with prerequisites and effects that describe whagtrbe true when the action begins and
what will be true when the action completes. Idiadn, there is a duration-state, which
describes what must be true throughout the codrgeaction.

An action may also have Rreparation describing actions to be carried out in
advance. Most are dampened with an IF concepédba condition and carry out an
action if that condition is not met. If all of tipeeparations and prerequisites are met, the
execution may be carried out.

In addition to these properties above, actions d&lage aParent Manner,
Terminationconditions,Results Maintain, Duration, Purpose Concurrent Priority and
more. Furthermore, other application specific prtips may be attached to the action.
Instantiated or un-instantiated actions or evemlaay all be referenced through the
action concept. This is because although theirlampntations are diverse, the

communication over them is homogeneous.

www.manaraa.com

10¢

Other Concepts

In addition to the two most important conceptsjaactind goals, TCL also has
notions ofbelief, what a participant holds to be trug@asoning or the evidence why a
certain belief is helddesires,the goals a participant wants to achievgentions the

current plans of a participant; along with othetiores such asertaintyor correctness

Task Operators

Typical task based models of multi-agent interat®uch as [12], use a generic
set of operators which operate on all shared cdacedowever, it is essential to infuse
performative-based meaning into these operatoastount for the expressiveness of the
human language. Therefore, rather than buildinguastion with ‘selecting’ a query
concept and answering that question by ‘selectmgther concept, TCL uses operators
such as ‘query’ about a concept, and ‘answer’ &ittoncept. Not only does this help to
trace the concept through the shared concept gaaghaid in the disambiguation of
meaning with generic operators, but it also all@asous discourse sequence patterns to
be detected and traced, such as question-answ#rough this added information in the
operator allows the communicative translator to enoaturally and more expressively
communicate with a human participant, the agerd sithe spectrum is abstracted from
having to deal with this added information througither the discourse rules or the

ontological hierarchy of operators.

Dialogue Modes and Sequences

Following the rule definitions of the practical comnication language, various
rules utilize intent and obligations in order taghtogether operators in a specific way
as to create a dialogue sequence. For instangeestion is generally answered. The
specific settings and usage of intents and obbgatithroughout a particular dialogue
sequence is referred to as a dialogue mode. Btanoe, when the mode of the rules is

set to ‘mutual planning’, each participant attemfusrefine a shared plan until it is

www.manaraa.com

10¢

satisfactory to all participants. The human pgéats can drive the conversation in any
way they see fit, however the agent will attempdriwe the conversation back toward the
current mode until completed or abandoned.

Understanding rules and how they change the com@eqt operators, as well as
having procedures or patterns that modify the cdnie a predefined way, gives the
agent the ability to push the conversation in sactvay to achieve a specific goal.
Furthermore, the agent may set the direction fareseof conversational patterns

depending on their implementation.

Layering of Dialogue Modes

The ability to push the conversation in a particway, as well as utilize a series
of dialogue sequence patterns allows a conversdtpattern to be layered. For instance,
a round of question and answer patterns may bagstagether to produce information-
seeking behavior.

The lowest level of patterns found within TCL rulaBow for the following
modes: inquiry, statement or disagreement of hedieliberation, formal argumentation,
information argumentation, clarification, explawoati information absorption and active
listening. The higher levels of modes used byagent within TCL include persuasion
of belief, reaching mutual understanding, negairgtiearning by description, command

and control, mutual planning and learning througtecs.

Protocol Engineering Revisited

This section attempts to return to the protocolimegring topics described in
chapter 2 and apply those topics to both the mactanguage theory and the newly

formed task communication language.

www.manaraa.com

11C

Utilizing Petri Nets

The dialogue rules described in chapter 3 repreaetrtansformation of data.
They are designed to remove the operator enaldi@gransition as well as produce new
operators as a result. Therefore, this transfoomamay also be viewed as a state
transition between operators. A state machineaslequate in modeling the various
obligations and rules because multiple operatonsesast simultaneously in addition to
the overwhelming connection to the shared concepaired concept graph and
obligations. However, the similar paradigm of PHi&ts, or more specifically Prioritized
Hierarchical Colored Petri Nets, provides an extdlimodeling methodology.

TCL is modeled as Petri Nets by placing abstraetrafor types in various places,
allowing each place to store the complex concrpegator of that abstract type. A place
in a Petri Net is similar to a state in a finitatstmachine. Then, any rule that triggers on
that operator type is attached as a transition fithiat state to all of the states
corresponding to the operators that the rule gée®ra Conditions are added to the
transition matching the conditions of the rule.

The shared concepts, the shared concept graph ldightmns, are added as
specialized places and connected to the transitbtise corresponding rule. If any data
is removed during the enabling of any particulansition, that transition is responsible
for adding the data back. This handles the cassoofe Petri Net implantations that
require all places to be stripped of enabling coois. Furthermore, each transition is
responsible for adding information to these spemdl places upon enabling. The
specialized places are referenced by the rules gdaee. However, in actual
implementation each place is hierarchically defiasdmany smaller shared places and
transitions that emulate the behavior of each stracaccording to the definitions of the
last chapter.

The prioritized feature of Petri Nets allows théesuto be prioritized as described

in the last chapter. Therefore, only one transitis made for each place. The

www.manaraa.com

111

hierarchical nature of Petri Nets allows variougels to be modeled within the Petri Net.
The rules are designed in such a way that the mbédkialogue corresponds to various
hierarchical containments.

Modeling the task communication language withinedrifNet tool has provided
invaluable graphical visualization for understamgdiand debugging as well as the
generation of various interaction models and théssequent validation of those

interaction models as described in the previouptehna

Natural Language to TCL

As a brief aside to linguists, a full natural lange front-end can be developed for
TCL. It is recommended to abstract the grammais separate layers, particularly the
task-model layer and the domain-implementatione EHsk-model layer would pertain all
of the linguistic information required for generactions, orders and objects. The
domain-implementation would include the formal waog$ of these concepts. For
example, objects in the Stratagus domain includgifeser’, ‘crystal’ or ‘training camp’.
This allows the task-model layer to parse domadependently, such as, ‘<action> 3
more <object>’, ‘first, <action> then <action>’ oir<expression> then <action>’.

As a reminder, it is not the goal of this disseotatto build a translator for the

front-end of TCL.

Synopsis

This chapter dealt with the application of the tiyeof practical communication
languages to the task-oriented domain. It discufise design and reasoning behind the
task communication language. Interested readerss@ongly encouraged to see the

partial specification in appendix A for a semariteatise.

www.manaraa.com

112

CHAPTER 5
EMPIRICAL INVESTIGATIONS

The thesis of this dissertation states that thgigtsea language between that of
human natural language and the behavioral reasariag intelligent agent, and that this
language is capable of not only unifying the vasionodels used in literature, but also
provides the foundation for a theoretical framewfkan engineering methodology for
building such models. In order to prove this hyyesis, an intelligent agent has been
constructed using the implementation details ofeaplp< B. This agent has been placed
inside a resource-management simulation. An exasggsion with a human participant
can be found in appendix C. This chapter will eagibe a proof-of-concept that
demonstrates the viability of the theoretical mdthdiscussed and reinforce the thesis.

It is the goal of this chapter to argue the thélstsugh demonstrating the core
conversational capabilities of the intelligent agémough references to the example
session in appendix C. These core capabilitiee@gpanded into demonstrating a variety
of current human-agent and agent-agent interactiodels such as argumentation and

negotiation.

Conversational Capabilities

A conversational capabilitys defined as being capable conversing in a pdatic
facet of conversation. Examples of conversatieaphbility include negotiation, mutual
planning, answering questions and so forth.

This section discusses the conversational capabilibat the intelligent agent of
this dissertation has been endowed with, and redaefothat capability with examples

from the listing of the provided human sessiongpendix C.

Turn Taking
The term turn taking refers to the fact that migtiparticipants in a conversation

cannot generate messages at the same time, amdoteermust wait while one of the

www.manaraa.com

11¢

participants has their turn. Although turn takisga critical aspect of spoken dialogue
systems, it was not a necessary component of thgrieal investigations within
Stratagus. Therefore, turn taking was not takdon eccount. Rather, the agent’s

messages were displayed on the screen for the hpanacipant to read at their leisure.

Human Initiative
The core conversational capabilities are brokea thtee sections based on the
manager and assistant paradignmitiative in reference to conversation refers to a
participant’s ability to take control and lead tbenversation. The human initiative
section includes various message patterns thagemerated by the manager, including
command and control; as well as the generated byhttiman, such as dealing with

linguistic cues. The section also limits itselfsiagle participant patterns.

Command and Control

Command and control has primarily been the mosmnprent interaction in task-
oriented domain. In fact, some of the first workratural language recognition has been
for the command of robots. Command and contrabigtinually expanded as more and
more basic patterns and recognition schemes irecredmat is deemed practical for
interpretation. Earlier work on command and cdri8@] has shown great promise in the
field. This section hopes to build upon that worklhis particular subsection of
command and control will be limited to the managaty. Command and control is

expanded later in the section on multiple partictpa

Simple Instruction

An instruction represents the core element of contmand control. A simple
instruction is taken to be an order given to anstmst to be carried out. Simple
instructions are instructions that can be direetkgecuted with no need for resolution.

The available human session includes dozens aneéndopf examples of simple

www.manaraa.com

114

instruction from, “mine titanium” to “build a traimg camp to the northeast.” One need

only glance at the provided session to see sinmgkeuctions at work.

Complex Instruction

Complex instructions are connected with other utdions to create sequences,
precedence and other compositional structure. Hi®y include instructions that carry
multiple atomic actions within them in a non-obwoway. In the human session of
appendix C, the statements "After that have anahgmeer build 2 generators" on line
45 and the combination of "First, train six soldleon line 231 and "Then, group them
together" on line 242 represent complex instruditirat are bound to each other or other
instructions. The first example is precedence tih@tprevious action in context is to be
taken before the action on line 45 is to be takéne second example combines both line
231 and line 242 into a single complex instructban action sequence.

An example of an internalized complex instructioowd be "Make two more
squads, one at each camp"” on lines 270 or 388.h Bbthese actually represent the
conjunction of making a squad at campl and makiaguad at camp2, as illustrated on
line 278 or shared concept number 86.

Through these examples, the TCL implementation dasonstrated the

capability of understanding complex actions.

Suggesting Instruction Methodology

In addition to complex instructions is the abilioyexpress a methodology on how
they are to be carried out. Examples in the pexvigession include “use a new one” on
line 75. Other methodology such as which toolsigde, what constraints to uphold and

how to optimize the action, such as quickest ostleasources, is also allowed in TCL.

www.manaraa.com

11¢

Conditional Instruction

The third type of instruction is a conditional insttion, which ranges from one-
time checks to standing orders to constraints. iCBjly, conditional instructions take one
of the following forms. “Whenever X do Y” is antamn in which the condition X is
checked continuously and whenever true the actios performed. “When X do Y” is
more ambiguous whether it be continual or once.olpwever, X is generally found to
be an event and Y is the action to do when thattewecurs. If X is a state it is usually
wrapped inside an event concept. “If X do Y” ipdadent on the tense found in X. If X
is future tense, then the instruction is deemedaraditional instruction waiting for an
event. If X is present or past tense then it isegally considered a one-time check. If
the condition X is true than Y will result, othesgi no action is taken. “Do Y until X”
performs the action Y until the event or state Xeigched. If the phrase “Do Y while X”
then the event may be continual, meaning it magssert if X becomes true again. One
can quickly see the expressiveness found withinrahtanguage, even when relating to
conditional instructions. These forms can eveeXiended using ‘Else’ and ‘Otherwise’.

In general, it is up to the agent implementatiomnderstand when an instruction
is to be run once, or whether it is to be run evenge the context is reached. However,
some cues may add helpful information such as “WKemlways do Y”. When the
keywords, ‘Never’ or ‘Do not’ are used, typicallget action falls into a constraint, such
as “Do not walk on the grass.”

In the provided session, the statements "Whenesgguad is ready, have it attack
the enemy” on line 520 and "Make squads as negéssarline 549 represent standing
orders, a form of continual conditional instructidghus demonstrating the capability of

TCL to model conditional instructions.

www.manaraa.com

11¢€

Prioritizing Instructions

The ability to prioritize instructions is one ofettadditions to the task-oriented
domain through expressive interaction. The pravidession yields two expressions of
prioritization, the first of which expresses the@ssity to carry out the action quickly on
lines 75 and 109, “as soon as possible.” The skespresses precedence, one action is

going to be carried out before other actions, na 99.

Statement of Objectives

The last form of single-participant manager-initiatcommand and control is the
assertion or abandonment of objectives and desilesthe Stratagus domain, these
typically fall under such statements as, “We neemtemcrystal” or “I want 2 more
engineers.” The provided session reveals "Bugally want missiles" on line 317, whose

unmodified meaning on line 318 represents the asreasf a desire.

Statement of Knowledge

An important aspect of single-initiative communioat is the ability to state
knowledge, whether it is knowledge about the wodd,internal knowledge of the
participant such as beliefs. For example, in thevided session, line 478 asserts
dissatisfaction; line 644 asserts the correctndsthe® agent; and line 806 asserts a
correction of meaning. Even stronger, most ansveges viewed as statements of

knowledge until they are taken into the questicgsponse layer.

Linguistic Cues

The usage of cues demonstrates advanced convaedatimapability in
understanding human generated statements. Howabldtesses and generates cues are
described all through out this dissertation. Theviged session reveals the statement
combinations on lines 231 and 242; 448, 449 and 480 748, 749 and 750, which

demonstrate the ‘first, then, finally’ cue combioas. Lines 162 and 438 demonstrate

www.manaraa.com

‘then’ alone. Lines 317, 567 and 718 demonstia¢ cues. Lines 038, 045, 54 and 263
demonstrate ‘more, other, another’ cues. Lineantb109 demonstrate ‘new’. Line 100
demonstrates ‘also’. Lines 270 and 388 demonsteateh’. Finally, lines 487 and 500

demonstrate ‘more’. Additionally, ‘our’ and ‘théare used internally.

Agent Initiative
Agent initiative includes various message patteitmet are generated by the
assistant of the system, through the monitoring execution of actions, events and

resources.

Notification and Bother

The notification of conditions or events is a featthat allows the manager to let
go of their attention of the system by allowing #ssistant to monitor it. The assistant is
capable of bringing the managers attention backh& system through notification.
Notification is a form of ‘Statement of Knowledg#escribed in the previous subsection.
The provided session demonstrates notificationuthinothe statements “The training
camp has been finished” on line 207, “The secoanhitig camp has been finished” on
line 221, “We can now make squads twice as fastfimn 531 and “We have finished
researching explosives” on line 534.

One of the important aspects of the agent’s aldifitynanipulate the attention of a
human is the decision of whether or not and whepedorm that manipulation. The

agent in this dissertation follows the general glirges of [19].

Multiple-Participant
Multiple participant interaction pertains to theteraction of two or more

participants, particularly when the messages theglyre correlate with one another.

www.manaraa.com

11€

Questions and Answers

The earliest and most widely adopted multiple paréint interaction type is the
ability to ask and answer questions. Typicallygions take one of two forms, a polarity
based, yes-or-no, question and a content relatedgtiqn, such as who, what, when,

where, why and how.

Yes-or-No Questions and Answers

The polarity-based question and answer are thestasi recognize and connect.
This is because the various statements that anawmlarity-based question, such as
‘Yes’, ‘No’, ‘Maybe’, ‘Il don’t know’, ‘Not sure’ ard so forth, are all easily recognized as
answers. This is mainly because they are nottab&and on their own as a statement.
There is no meaning behind telling, asserting appsing ‘Yes'. However, the word
‘maybe’ may also be a forward-looking statement dwrelates to confidence such as,
“Maybe we should...” or “Maybe | need...” and so forth.

The provided session is filled with polarity baspstions and answers.

Concept Questions and Answers

The content-based question and answer are a fitdkier to recognize and
connect. This is because the answer is often repeg as an assertion of knowledge. In
addition, most questions have an ambiguity behihdtwhey are actually asking for. For
example, in the Stratagus domain, the question “iH@my engineers are there?” may be
met by any one of the following responses. “Noaigde’Not sure, maybe 1477,
“Anywhere between 10 and 14.”, “At least 14 that Wave seen”, “14”, “14 engineers,
10 of ours,” “We have 10 engineers”, “There arenéray engineers”, “14, 10 of ours, 4
of theirs that we know of’ and so forth. The coustion of the knowledge pertained in
an answer is the responsibility of the agent, wdiethe presentation or translation of that
knowledge is the responsibility of the text-generatnechanism.

The provided session is filled with concept questiand answers.

www.manaraa.com

11¢€

Delayed Response

In some cases, it is not possible to answer a igmesntil later knowledge is
acquired or events occur. In this case, the ansagpically an acknowledgement of the
guestion and the assertion of the postponemeriteobbligation to answer the question.
Such a statement would be something like, “I'll yeu know.” This is recorded within
the TCL agent as an obligation to be addressed kate the dialogue model is capable of

using this type of response to complete the questiswer matching.

Information Seeking Dialogue

A series of questions pertaining to the same cdnoep set of concepts is
referred to as an information seeking dialogueis Type of dialogue is constructed by
connecting the various question-answers togethdrraoognizing the intention of the
guestions toward a specific objective. An exangfl@an information seeking dialogue
would be along the lines of “How many airline flighgo to Detroit.” “When is the first
one?” “How long is it?” “How long are the othetsA typical information seeking
dialogue will utilize a number of modifiers and eefnces to connect to the previous
guestion or question’s answer.

An example of an information seeking dialogue ie finovided session would be
the focus of attention on engineers from line 6b8rte 830. This particular dialogue is
introduced by the statement on line 652, “How mamgineers do we have?” This
statement creates a set of engineers, which amestiected, queried and iterated. "What
are they doing?" on line 662. "Show me the onatdhe standing.” on line 678. "What
is its history?" on line 697, and so forth.

Information seeking dialogue is a domain in itsalitside of the task-oriented
domain. However, it is demonstrated that a greamyrproperties of the information

seeking domain are modelable inside TCL.

www.manaraa.com

12C

Clarification Dialogue

Another important pattern found within task-orieht#alogue is the ability to use
a question-answer pattern for such purposes alvirgg@ misunderstanding, conducting
refinement, confirming interpretation and resolvemgbiguity. These types of dialogue
are referred to as a clarification dialogue wheggiery is constructed in order to bring an
operator and concept into better understandinge iftentions behind a clarification
dialogue are called grounding, which is the desirdoth participants to confirm that
they are discussing the same concept. Exampledadfication dialogue within the

provided session are abundant.

Command and Control

Now that the various question-answer patterns bhaen described, the multiple-
participant variations of command and control caloWw. Although there are many
multiple-participant variations, three core mixaatiative variations will be described in

this section.

Incomplete Instruction Resolution
When an instruction is ordered but there is insidfit information for that

instruction to be carried out and that informatt@mnot be easily deduced; a clarification
dialogue must be used to fill in the missing infatran. This pattern is referred to as
incomplete instruction resolution. Several insenof instruction resolution can be
found within the provided session. The first imst& includes the original order "Send 7
engineers to mine" on line 1, which is incomple¢eduse the agent does not know what
resource the engineers should mine. Thereforeagusiarification it introduces the
guestion “What should they mine?" on line 21. Tduestion is later answered on line 29
with "Crystal" which is resolved as the answer testion 21, and thus completes the
clarification dialogue. The answer is then comdingth the original order in line 32,

which is then sent for execution in line 35.

www.manaraa.com

121

Another instance of this type of dialogue startthwthe order "After that have
another engineer build 2 generators" on line 4%is Drder is incomplete because the
agent is not sure where to build the generatoretbee using clarification it introduces
the gquestion “Where?" on line 53. The answer ts tjuestion is provided on line 54,
"To the west, near the other generators”. It isndled a valid response and resolved as
the answer to question 53 and thus completes thdichtion dialogue. The answer is

then combined with the original order on line 589 @sent for execution on line 63.

Instruction Problem Resolution

Another type of instruction resolution comes frome fact that the agent is not
always able to carry out the order because of sesteiction in the environment, it does
not have a required permission or it opposes tlaeshobjectives of the human and
agent. In this case, the agent must use anotberdf dialogue, such as a request for
permission, a rejection of the action or an addoéstared objectives.

In the provided session, the order "Send 7 engsngemine” is given on line 1.
This order cannot be carried out by the agent lsecthere are only two engineers in the
game. Therefore, the agent responds with thetrejeof the action, “l can't, there are
only two engineers” on line 8. This is similar &0 error message one might receive
when attempting functionality in a computer prograiowever, the agent is not done.
Rather, it produces a proposal of a solution thatildl take care of the problem with
executing the command. Its solution, “Should intrenore?" is produced on line 12.
When the solution is approved on line 13, the sydteilds a new plan that incorporates
the solution on line 18 that is then evaluatedefagcution. In this way, an agent was able
to use a proposal pattern to resolve the conflutis the command.

Another example of incompatible instruction resalntcan be found on line 66 in
which an engineer is sent to build a training candjnere are not enough engineers to

fulfill this order, so the agent asks for permissto take an engineer away from another

www.manaraa.com

122

action, “May | take one away from mining?" on liié. In this case, the agent uses a
proposal to overcome the conflict with the instroiet However, as opposed to the
previous example, the agent is denied permissiotinen75, but is given a different
methodology for overcoming the conflict. The agéntthen able to use this new
methodology, combine it on line 87 with the oridiaation and send it for execution on
line 90. Other examples of instruction problemoheson are omitted due to length

restrictions.

Order Conflict Resolution
Order conflict resolution is a special case ofrungion problem resolution that
involves a conflict between multiple orders. Doddngth considerations, discussion is

omitted.

Objective Conflict Resolution

Objectives can conflict with themselves as welbeders. It is the assistant’s job
to monitor these circumstances, detect any cordinet bring it to the attention of the
manager. In some cases, the agent may refusgeot specific orders because they go
against objectives.

In the provided session, the human gives the dimére titanium” on line 705
with reference to an engineer that is standing.wéier, when the agent evaluates the
order, it realizes that energy is running low, tsejects the order with the proposal “We
should have the engineer build two more first” orel722. In this way, an agent can

reject orders and provide feedback when those sw@rflict with shared objectives.

New Instruction Development
One side effect of the ability to discuss tasks pnacedures is the ability to
discuss new tasks and procedures. In this wayn@ah can give new orders through a

sequence of orders or reasoning. This is callachieg by description or learning by

www.manaraa.com

12¢

discussion, depending on the patterns used. Thesea variety of patterns and

sequences, which lead to the learning of instrastio Therefore, due to length

considerations, only one is outlined with referetweéhe provided session to prove that
the agent is capable of this conversational cagpabil

On line 222, the agent is given the order “Creasgj@ad.” However, the agent

does not know how to perform this action. Therefar creates a clarification dialogue
with line 230 with the question “How do | creatsguad?” An answer is then provided
to the agent, “First, train six soldiers” on lin@12 This completes the clarification

dialogue and builds a procedure for creating a gquidowever, the statement "Then,
group them together” on line 242 later is reasoted@onnect with line 231 and the

concepts are merged and the procedure is exteadedude this new information.

Explanations

Explanations represent a specific type of quesdioswer pattern that provide the
reasoning behind an action, objective or statdhefworld. The ability to communicate
this reasoning is an important aspect of being &bleommunicate over a task-oriented
domain. Explanations can be found within the piledi session on lines 162, 176, 314,

596, 612 and 641. Further discussion is omittedbtéength considerations.

Discussion

Discussion is defined as an extended multiple-@agint communication focused
around a particular topic or group of topics. Histcase, a topic is realized as a concept
or group of concepts. The actual patterns usddmwé discussion sequence vary greatly,
however, the distinction of a discussion from otpatterns are still important. There are
two good examples of discussion within the providession. The others are omitted due
to length considerations.

The first discussion pertains to the amount of tiaming in the game. This

discussion is started by the human with the statérfidow much time is left in the

www.manaraa.com

124

game?" on line 129. The agent, who does not haeeigh computational power or
domain knowledge to exactly predict the outcomehaf game, replies with “I'm not
sure” on line 136. However, the human continuesghbject with the question “More
than 5 minutes?” on line 137. The agent, realizingt there is indeed more than 5
minutes in the game responds affirmatively, “Yes lme 152. The human wants to
know why there is more that 5 minutes, so they‘&hky?” on line 153, to which the
agents responds with the reasoning behind the armwknes 178 and 179. The human
thinks about this response and concludes that tkek® minutes left in the game. They
guestion this conclusion to the agent on line 180, 10 minutes?” The agent analyses
this new conclusion and realizes that there shibelthuch more than 10 minutes left, and
formulates the argumentative response give on 2i0®. As can be concluded, this
discussion did not have a specific goal in minceothan discussing how much time was
remaining in the game.

The second discussion is over the difference innineber of training camps.
This difference may have come from the forgetfudnesthe human, or through actions
or events that the human did not notice. The disiom starts with the question, “How
many training camps do we have?” on line 557, taclwithe agent replies, “4” on line
566. This simple question-answer sequence israoedi with the rejection of the answer
using the statement, “But there were two before’lina 567. The agent evaluates this
rejection using the justification provided on |ifé6 and formulates the response “Now
there are four” on line 582. At this point the hramwants to know why there were two
and now there are 4 so they ask, “What happenadfihe 583. The agent responds with
the actions that lead to this change on line 538 Wibuilt two.” The human wants to
know why these were built, so they ask “Why?” arel699. The agent determines why
and responds, “In order to build squads fastertim® 614. The conversation continues

for quite some time discussing the autonomy beltedaction. In this way, discussion

www.manaraa.com

12t

can be observed which shifts from one concept ¢ontbxt as the focus of the human

shifts with new information.

Iterating Sets

Discussions can also be specialized, as is theva#issets. Discussions over sets
can include advancing through the set, narrowimgstit, and inquiring about properties
within the set. Information seeking dialogue tyf@e of restricted discussion of sets.

In the provided session, a discussion over setinbeagith a single question
answer pair, “How many engineers do we have?” & 652 and “23” on line 661. This
creates the notion of a set of 23 engineers. Tiesteppn “What are they doing?” on line
662 inquires information about the set. This goesis paired with the response, “13 are
mining crystal, 7 are mining titanium and 3 arendtag” on line 667. A subset is created
through the order “Show me the ones that are stgidin line 678. The agent realizes
that it is impossible to show this subset, but eatthan using an instruction problem
resolution, the agent focuses on the first itenthn set and shows it on line 659, along
with the statement “Here is the first” on line 69@he discussion continues with the
human inquiring about the history of the enginéatpwed by an order with an objective
conflict resolution. Once these sub-dialogues heampleted, the human brings the
focus back to the set with the statement “Next’liae 729, which advances the set to
show the second engineer on line 737. After inggiabout the history, the human then
asks, “How many are left?” and advances to thel fimagineer. This example
demonstrates the ability to enhance normal disonsswith expressive capabilities over

unique objects such as set, combined with variauisimmodal abilities of concepts.

Negotiation

Negotiation allows each participant to propose,ntey offer and reject concepts
until the concept is agreed on by all participan&me negotiations center on making

offers or the discussion of an attribute value salprice; while other negotiations center

www.manaraa.com

12¢

on the definition of a particular concept, likeilh oing through congress, where various
party’s interests are to be represented.

Negotiation in the provided session begins with fireposal, “Let’'s make
missiles” produced by the human on line 281. Tgen& evaluates this proposal and
realizes that it is not the best course of actomtake. Therefore, the agent counters the
proposal with “No, | think we should train upgradsaldiers, then build a hospital.” At
this point, the human wants to know the justificatifor this, so they introduce an
explanation sub-dialogue, “Why?” to which the agesgponds, “Because it is faster and
easier than missiles.” The human is not satisfigt this justification and reasserts the
missile proposal with the statement, “But, | reallgnt missiles.” This statement also
expresses a strong desire to have missiles. That,agealizing the rejection of its
proposal and the desires of the human, tries tceraakompromise with “How about we
train upgraded soldiers then build missiles?” $8s¢ the human accepts this new

proposal and the objective finds agreement.

Mutual Planning

Mutual planning allows each participant to proposegept, reject, refine and
counter propose a shared plan until all participagree and commit to the plan. This
can involve discussions about the various aspéddtsegolan as well as the justifications
of the various acceptances and rejections.

Mutual planning takes place within the providedssas through following the
negotiation example above. On line 329, the huagmees to the mutual objective of
training upgraded soldiers then building missiléhwhe statement, “Alright, what do we
need to do for upgraded soldiers?” This statenteimgs the focal attention of the
participants to discussing a plan for obtainingrapgd soldiers. In addition, it queries
the agent with taking initiative over the planninghe agent responds to the question on

line 355 with, “First, we should build a researab.I The human looks around the camp

www.manaraa.com

and notices a good spot for the research lab toTdgey then respond with the proposal,
“How about just north of the vault?” The agent leates this proposal, finds it
satisfactory and acknowledges its agreement. Theragent brings focus to the next
step in the plan, “Then, we’ll need to research@sipes.”

At this point in the plan, the human shifts theus¢o a new order to attack the
enemy. Several sub-dialogues occur to fulfill thrder and the human returns focus to
the plan with the statement, “Where were we?” oa #00. The system finds the context
and reasserts the current plan and focus with #0&sand 407. The human approves this
plan, “Sounds good” and questions, “How long wiltake?” The agent answers, “1630
cycles.” The human then acknowledges the answertalis the agent to execute the
plan. This shifts the autonomy of the agent todtemhe plan, and removes it from the

focus of discussion.

Interruption

Interruption is an important component of any iatdive paradigm. There are
two essential aspects of interruption. First, eéherthe shift in focus to a new topic and
then secondly there is a return of focus back eéootinginating topic. The shift in focus to
a new topic in TCL is performed through the initiatof either the human or the agent.
The current focus is recorded within both the sthacencept graph and the current
obligations.

The provided session demonstrates an interruptighirv TCL through the
human’s statement, “Go attack the enemy” foundim: 369. Before that shift, the focus
was on developing a plan to create upgraded seldiérom there, there is an incomplete
instruction resolution dialogue followed by anotlveder. After that, the human brings
the focus back to the plan through the stateméfitjere were we?” on line 400. The
system performs this continuation of focus by figdany obligations. In this case, an

obligation of an answer to the shared plan is foudthe system first determines the

www.manaraa.com

12¢

originating nature of the obligation and statesWge were planning to build a research
lab just north of the vault.” Then it reasserts tperator that caused the obligation, “We

then need to research explosives with it.” In th&y the plan is continued.

Feedback

Opening up the task-oriented domain to communinaiod interaction allows
interesting new capabilities to be introduced. ©Ohehese is feedback, the capability of
one participant to respond to another participastsnmunication or actions. The
response is generally a comment, or reaction topdmticipant rather than previous
responses such as answers to questions and so fdi@lL is capable of modeling
feedback on a variety of scales including: polarggtisfaction, confidence, agreement,
relative and some emotion. More on each of thggestis described in the feedback
section of the partial TCL specification found ippandix A. Feedback generally falls
into one of two categories, positive feedback aedative feedback, both of which are
found within the provided session.

Negative feedback is introduced by the human oa 48 with the statement,
“That’s not good enough!” The system recognizes $iatement as dissatisfaction and
tries to find with what the human may be dissatfi The dissatisfaction of a concept is
then transformed into a problem concept on line @&d the problem is evaluated by the
agent on line 483. The agent eventually producssltion that the human agrees with
and they put it into motion. Positive feedbacknsoduced by the human on line 644
with the statement, “You are right.” The systentognizes this statement as an
affirmation of correctness. This is transformedthg system into the acceptance of an
earlier statement and evaluated as such by thé.agen

The agent is not given much opportunity to prowiady feedback to the human.
This is because in the current sessions, the ggafdrms all of the actions while the

human only observes and communications. Howekieragent is still able to provide a

www.manaraa.com

lot of feedback when it is attached to the rejectd proposals and actions, such as lines

290 and 718. This type of feedback is falls undstification.

Adjusting Autonomy

Another capability opened up to the task-orientenhain is the ability to discuss
and adjust responsibility and permissions. Thigetyf capability is grouped under
adjusting and discussing autonomy. Autonomy reprssthe agent’s ability to act under
its own knowledge and experience. Responsibilitg @ermissions define when the
agent should ask the human participant for helgir@ction; as well as what the agent is
or is not allowed to do.

Permissions are generally requested, granted, givelenied. In TCL, the agent
may use the pattern for request-grant-deny to hskhtiman for a permission. |If the
agent is granted the permission then the agentfatiayv its intent, such as executing an
action. If the agent is denied the permission ttienagent must reevaluate the intent
with another course of action, perhaps even abandonor rejection.

This request-grant-deny pattern may be seen witleérprovided session starting
on line 66 where the human asks the agent to carryan action, “Send and engineer to
the northeast to build a training camp.” The agentinable to complete this action
because there are insufficient free engineers. reftwe, the agent asks permission on
line 74 to take an engineer away form another tddky | take one away from mining?”
The human denies the request, “No” but also addkadelogy, “...use a new one, as
soon as possible.” When the agent re-evaluatesntbeded action it incorporates the
new methodology and realizes that by creating a eagineer, it can overcome this
problem. Permission may also be queried like oe b15, “Who told you that you
could?”

The responsibility for individual actions may alse shifted during the adoption

or acceptance of proposals as well as answersglquaries. The following examples

www.manaraa.com

13C

demonstrate this shift in responsibility within tpeovided session. On line 487, the
agent proposes, “We could build more training cdnagsthe solution to a problem of not
building soldiers fast enough. The human prodticesesponse, “Take care of it” which
implies that the agent should carry out the plahwlding more training camps. Another
accept and responsibility shift is performed by thugnan on line 427 with “Ok, do it”

which implies that the agent should carry out thenpof building a research lab and
researching explosives. The decision of a quessialelegated back to an agent on line
513, when the response to “How many? What shdwdg mine?” is met with “You

decide.”

Corrective Dialoques

The ability to correct previous statements, inahgdihe meaning or the message
itself, is one of the interesting aspects thatratgon provides the task-oriented domain.
Such corrections often require reinterpretatiort thast have access to a history of the
conversation as well as a history of the interpi@ta and actions performed based on
those interpretations. For instance, if a paréicgtatement lead to an action, and then
that statement is corrected to mean something etshe statement is removed such as,
“| take that back”. Then not only the statemergdseto be reinterpreted or removed, but
also the operator that resulted may need to bewednor undone, including such things
as the consequences of actions and other causalitieerefore, the shared concept graph
is an essential component of the task-model. 1h,Te shared concept graph not only
allows for correction, but it also allows for thisclssion of interpretations.

In the provided session, the human requests, “Hamynengineers are left?” on
line 789. Because the participants were enumerdhia subset of engineers that were
standing the agent uses this as a context to artbeeguestion on line 805, “You have
seen all of the engineers that are standing.” Aumaan then rejects this answer with a

corrective statement, “No, | mean in the game.thd agent were intelligent, it may use

www.manaraa.com

131

this information to realize that ‘in the game’ is@perset of ‘engineers that are standing’
and that the human wants to expand the answel émgiheers. However, what actually
happens within this particular provided sessionthat the agent rejects the first
interpretation of the question, thus dropping tbatext attachment and re-evaluates the
qguery. It does take into account the added réstniof ‘in the game’. However, this
restriction includes everything and is thus notal restriction.

Another example in the provided session beginsio® 633 when the human
states, “No, | didn’'t” in disagreement to the fwat the agent is claiming that the human
gave the agent permission to build more trainingEs In its own defense, the agent
finds the statement that it believes granted resipdity to build the training camps, and
asks forms an explanation of the interpretatiomisTs produced by the system on line
643 as “Oh, | thought that's what ‘Take care dfrteant.” It is important to note that
the agent has no idea of the actual linguisticthefmessage, e.g. ‘take care of it’, but
rather knows that there is some form it out thdrat tthe dialogue model knows.
Although this example demonstrates the ability hed igent to provide interpretation-
based justification, it is not corrective because human then agrees with the argument
by stating, “Yes, you are right.”

The recognition of misinterpretation is not alwagsovided by the human
participant but sometimes through the dialogue rhedewell. However, it was the

purpose of this section to cover corrective diatxju

Multimodal Interaction

One last important aspect of interaction worth nogmg is that interaction need
not always be spoken or written. Multimodal int#i@an applies to interaction through a
variety of means including gestural, visual, augitavritten and so forth. Although the
designed system is limited to written text, therdgeay also observe selection with the

mouse and may manipulate the graphical displayhtavsvarious viewpoints. Even in

www.manaraa.com

132

the provided session, the agent needed to detcitinent viewpoint of the user in order
to help resolve such statements as ‘to the westoothe northeast’. These statements
were ultimately modeled as directions relative e turrent view of the user. In

addition, the agent was able to shift the viewHhove various objects on lines 219, 695,

737 and 782.

Enhanced Agent Capabilities

The intelligent agent is able to gain several ingoar capabilities through
interaction with a human participant in a task-otéel domain. Although these are not
communicative or interactive competencies themseleemmunication or interaction

enhances these agent abilities.

Reinforcement Learning

The interaction provided through the dialogue madielws the human to provide
direct feedback on the actions and communicatioth@fagent. Through this feedback,
the agent is able to learn what the user likes dislikes as well as gain an empirical
rating for its performance in certain key areadiisTis accelerated by the fact that the
dialogue system is responsible for figuring out tMie feedback applies to, so that the

agent can utilize this feedback without the needrterpretation.

Knowledge Learning

Although knowledge learning is a general capabitifyagents, the interaction
provided by the dialogue model allows new ways ol an agent can learn. In the
‘new instruction development’ section of command @ontrol, the agent was able to
learn new procedures by communicating with a humlaout them. Furthermore, the
discussions of several methodologies in the ‘oatenflict resolution’ section expanded

the action knowledge of the agent.

www.manaraa.com

13¢

In addition, the agent is able to absorb informmatiold to it by the human
participant through the dialogue system. For msain the provided session on line 255
the human introduces nomenclature, “The group lledta squad” which the agent is
able to learn and incorporate into future commandisus, future references to squad

were understood to mean future references to gogrbsoldiers.

Learning User Preferences for Adapting Behavior

In addition to reinforcement learning and absorhidirgct knowledge, the agent is
able to build a user model based on various regsosisch as answers, justifications and
even frequencies of operators. For example, inptioeided session, in connection to
“Send an engineer to the northeast to build a itrgicamp” the human adds the
methodology “use a new one, as soon as possifdleen in the next order, “Also send
one to the south to build a training camp” the agketected a similarity between that
order and the previous order to the northeast. U$® model suggested that the
methodology of creating a new engineer and givirggaction a high priority would be a
good idea. However, in this case the agent watat@dnfirm this methodology with the
user and therefore generated the statement “A mewas soon as possible?”

Another example demonstrates repetitive actions given context. The human
asked for the history of an engineer being displdyath on lines 697 and 738. When it
came time for the third engineer to be displayedlina 782, the agent voluntarily

provided this information to the user.

Operator and Concept Layering

An important property that was used in the previsestion that should be
formally discussed is the ability of the dialoguedul to build layers of interaction. It is
important to note that these layers are not a rement of the TCL framework, but

rather a product of building the TCL dialogue rul@iéowing a specific design.

www.manaraa.com

134

Layers are constructed by utilizing rewriting rules recognize and interpret
incoming messages and cast them for a higher |dyar.example, questions and answers
are on a specific layer. When an incoming mesgagdetected as an answer, rather than
having the question-answer layer deal with it difgdhe message itself is transformed
into an answer, which is then passed to the questiswer layer to be dealt with
accordingly. Similarly, there are recognition gitbat translate messages into rejections,
denials, and so forth. The separation of recogmiin lower layers and subsequent
connection in higher layers allows the higher laysy deal with the handling while
reducing the complexity of the overall system.

Further layers are created by interpreting thew®f a pattern and forwarding
the intent to the next step in the higher-leveltggat For instance, sub-clarification
dialogues are constructed by asking questions abpatticular topic, once the answer is
received that specific clarification is closed ahé system uses handler functions to
revert to the original topic. The shared conceppl is essential in finding the original
context of the concepts before the sub-clarificatthalogue took place. The use of
layers was described within the multiple participeommand and control as well as the
multiple participant question and answers sectabe.

Another layer is created by allowing the agent $e gpecific patterns such as
request-approve-deny or propose-counter-accepttrefehe agent’s ability to control the
focus of conversation presents the agent its oyerJavhich can then be abstracted even

further within the agent.

Synopsis

The goal of this section was to use evidence froenihcluded example human
session in appendix C to reinforce the thesis thaingle language created between
natural language and agent behavior reasoning dmeildonstructed in such a way to

unify the various dialogue models used in literatur This was accomplished by

www.manaraa.com

13t

demonstrating many of the conversational capadslitwithin a real TCL session,
including: command and control, information seekingotification and bother,
clarification dialogues, explanations, discussionsggotiating, mutual planning,
interruption, feedback, adjustable autonomy, coivedaialogues and more.

Furthermore, the TCL system is designed in suchag that it is independent
from the various conversational capabilities présgn Therefore, new capabilities may
be added through introducing the appropriate casceperators, rules, intents and layers

accordingly.

www.manaraa.com

13€

CHAPTER 6
DISCUSSION

This chapter concludes the body of research predeantthis dissertation. The
chapter begins by discussing the implications tegearch has on related fields. Then

major upcoming problems are discussed, followed bitort summary and conclusion.

Related Fields
The theories and technology developed in this dssen apply to many areas
that involve either intelligent agent interactiondalogue modeling. This section will
discuss the implications affecting some of theseasr including agent-agent
communication, business process management, thenserweb, dialogue management

and human robot interaction.

Agent-Agent Communication
This research was able to present a great incr@asthe conversational

capabilities and expressive power of task-oriestadmunication, including reducing the
interpretative and dialogue-modeling load of therdgnto a separate system. This has
great implications for agent-to-agent communicatiétowever, the shared medium, the
task concepts and operators, is the core mediunmtefaction. Therefore, either a
translator would have to be developed to trangtagemedium into a form native to the
intelligent agent, or the intelligent agent woulva to adopt the medium. Although the
medium may become a standard, it is extremely M®land changes quickly as it is
expanded by varying parties encompassing more ade npractical’ features.
Therefore, it would be hard to use as the foundatior communication among
heterogeneous agents. However, using homogenargsagr at least agents having

homogonous communication components, the TCL framnewould be a fine candidate.

www.manaraa.com

In addition to providing ACL conversational modgjito multiple agents, the core
TCL operators may be mapped to specific performeasiyle speech acts. This mapping

allows either the KQML or FIPA-ACL transport layter be used with little effort.

Business Process Management
Business process management is currently a verylg@oprea in both industry

and academia. The management of business procegzesents the ability of an
organization to optimize or adapt their business@sses as the organization changes.
The maturity of the field has produced semanticesgntations for the modeling of
business processes. These models often refeetootinmunication between customers
and internal mechanisms. Consider the action-imskfoop of [31]. In this workflow,

a customer places a request for work, the perfothmem does the work, the performer
then reports that the work is done to the custcaner the customer then acknowledges.
This type of interaction can be seen as highertlewers of the conversational patterns
discussed in the last chapter. Furthermore, antaggn be used to fill many of these

roles both in implementation and in the simuladmdividual business processes.

The Semantic Web

Another very popular area is the Semantic Web. Sdmaantic web attempts to
take the paradigm of the World Wide Web and enhainedth semantics, giving well-
defined meanings to the information contained withit is hoped that this new semantic
web will allow both humans and agents to find, shand combine information more
effectively. The semantic web relies heavily onchae-readable information and
ontology markup languages that encode the strudithis information so that agents
can understand it more easily.

There has recently been a push to create an agead lfiront-end for the semantic
web. One that would allow a human to use an ageaccess the web much like the

manager-assistant paradigm used in this dissertatimwever, rather than the basing the

www.manaraa.com

13¢€

shared medium on the planning, management, momgtaand execution of task and
procedures, the shared medium would have to befimddor the search, sharing and
combination of information in semantic form. ThELT based approach shows promise
for performing this role as long as the shared omadconcepts are presented in a way
that can be easily rationalized and communicated byman participant. Because the
task communication language was based on the thebmyractical communication

language, it is highly promising that such a nemgleage can be created.

Dialogue Management

The TCL framework shows great promise in improving theoretical aspects of
dialogue management. The most important contobuttd dialogue management is the
introduction of shared concepts, including the stlatoncept graph. The ability of a
dialogue manager to go beyond mere dialogue tag®parate on complex structures is
an essential part of why TCL is so successful. tAaoimportant component is the
reliance on a reasoning engine for dialogue managenather than a specific algorithm.
This allows the dialogue manager to quickly expand adapt to new features, as well as

the ability to layer dialogue protocols on top akanother.

Human Robot Interaction

Human robot interaction shows the most promis¢HerTCL research area in the
next five to fifteen years. Human robot interawctis the study of the interaction between
humans and robots, including psychological, sogicll and engineering aspects.

Current research in robotics has been dealing wetly specific robotics issues
such as navigation, grasping, moving obstacle tleteand avoidance, object and facial
recognition, even multiple robot or human-roboteabjpalancing. There has been a great
push for an anamorphic robot capable of interadingctly with humans in daily life. If
these robots are expected to interact with humargtivities of every-day living, much

greater communication and interaction technologies needed. The TCL theory

www.manaraa.com

developed in this dissertation shows great pronitseintegrating many models of

communication into a single working human-centexpglication.

Future Work
This section attempts to outline some of the mamroming problems that will
limit the TCL theory. These problems are beyond Htope of this dissertation.
However, they need to be addressed and solvedhdoiuture success of TCL as well as

many communication-enabled agents.

Understanding contexts

Various concepts and operators were connectedsrigsertation using modifier
keywords such as ‘first, then, else’. This alloviled system to recognize when a concept
referenced a previous concept and when a certainsfovas completed. However,
without these modifier cues the problem becomeshnmuare complex.

Consider the following dialogue sequence: The huroeders, “Create two
squads.” to which the agent replies, “How do | teeasquad?”

In the first variation, the human would then stéfeain 6 soldiers.” Then, “Have
them attack the enemy.” Is the second statememitaditacking the enemy tied to the
answer of how to create two squads or it is a seépanrder that is given after the answer
has completed? In other words, is it “Train 6 goilin order to create a squad. Now go
attack the enemy” or is it, “Train 6 soldiers aral/é them attack the enemy in order to
create a squad.”? As a human, one can postulatdattis probably the first, because
attack and create are different concepts. NeVedhghow is an agent to know this?

In an even harder variation, what if the origin@tement was “Create 2 squads”
instead of “Create a squad.” Furthermore, whttdafsecond statement was “Group them
together” rather than “Have them attack the enem/duld it then be “Train 6 soldiers
and group them together to create a squad. Ciwatsquads” or would it be “Train 6

soldiers to create a squad. Create two squadgemgp the squads together.” In the

www.manaraa.com

14C

second variation, future references to the squagtaups of squads may hint about how
this should be interpreted. However, the agenhatrely on this information because it
is unpredictable.

In order to understand the differences in thes@tirans successfully, the agent
must place much more reasoning behind referenagdutes, including the intentions,

outcomes and consequences of all of the varioegprétation possibilities.

Shift in control
The research represented in this dissertation septe a shift in control. The
dialogue manager is no longer the center of confivolthe communication of an
intelligent agent, but rather acts as a pass-tiraugating TCL for every user utterance
or gesture and generating output when receiving. TChe task-communication model is
now the enabling force in the communications aspétiie agent, and the agent is given

control when to send messages.

Mixed-Initiative Interaction

Mixed initiative interaction is the interaction ang multiple participants in
which any participant may take the conversatiogalll This is an important aspect in
the future of human-computer interaction. Whenusthahe agent take the lead in the
conversation and guide it toward a specific oby@@i When should the agent leave the
conversation open and follow the lead of the otparticipants? There are many
researchers working on these questions. Howeler, work needs to be incorporated

within the agent, or within the TCL dialogue model.

Turn Taking

Another aspect of multiple participant conversai®iurn taking. Turn taking is
the ability to detect when another participantpgeaking or has the conversational floor,

and waiting until that participant is done, or ttenversational floor is available. There

www.manaraa.com

141

have been a great many studies on how the turasised or kept. However, these types
of ideas need to be incorporated within the TCimieavork for the agent to communicate

successfully in mediums that rely heavily on tuakig such as speech.

Summary

This dissertation addressed the problem of thevdwelming variety of ways
intelligent agents rationalize communication byegrating many of the disparate
dialogue models found in human-human, human-ageditagent-agent communication
into a single model. Sound theory, including thractical communication language
hypothesis was created. Several major enhancemesits introduced to dialogue
management including the formation of the meanictgpa concept and its use as a
shared medium as well as the introduction and pa@tion of the shared concept graph.
The ideas behind the speech-act and dialogue-aetex¢ended by introducing behavior-
based operators and allowing the operators to afuplgpecific, structured and well-
defined concepts. An accompanying engineering otktlogy was defined for the
construction of concepts, operators and rules ¢hedite the language and model of a
specific domain, including methodology for the f¥iedtion and validation of that
language and model. This practical communicatmgliage methodology, based in part
on the theory rational communication, was usedatastruct a task-based language and
model called the task communication language fraonkew This framework was then
implemented within an intelligent agent in a reald resource management simulation.
A sample output listing from actual human interactivith that implementation was used
to demonstrate that the resulting framework diceealincorporate many of the disparate
models of communication and their correspondingabdipies. This provided a proof of
concept, proving the thesis: there exists a languiagtween that of human natural
language and the behavioral reasoning of an igesiti agent, and that this language is

capable of not only unifying the various modelcommunication, but also provides the

www.manaraa.com

14z

foundation for a theoretical framework for an emginng methodology for building

models of conversational capabilities.

Conclusion

It is unknown why so many researchers continuailyoduce new features of
communication without working to integrate thosattges into a common foundation, let
alone a working prototype. The research presentéhis dissertation attempts to solve
this problem by providing a common foundation foe introduction and implementation
of new communication capabilities within an intgint agent for experimentation in both
human-agent and agent-agent communication.

The results from this dissertation show great psenfior the future capabilities of
intelligent agent conversation and consequently dummobot interaction, human
computer interaction, user interfaces, intelligegents and many other unforeseen areas.

It is the hope of this author to continue to pushérds the advancement of these
conversational capabilities in an effort to motevathe advancement of speech

recognition, and natural language understanding.

www.manaraa.com

14¢

APPENDIX A
PARTIAL TCL LANGUAGE DEFINITION

This appendix provides a subset of the task comeation language including all
of the concepts used in the annotated example hwsmasion in appendix C. The
appendix is broken down into four sections. Fiedbstract concepts are described
followed by both interaction and agent abstractrajpes. Helper functions are then
defined, including how they work within the struetuof the shared concept graph,

followed by macro functions.

Abstract Concepts

Abstract concepts of the practical communicatiorgleage theory are defined in
Chapter 3. They represent the individual meanictgpa concepts that are shared across
the communication-behavior spectrum, realized enrthind of the individual participants
in a conversation. Because of this shared mindsistessential that these concepts can
be naturally conceptualized by a human participant.

These concepts relate directly to both task ortemtasuch as goals and actions,
as well as some common domains such as time, sppaceausality. These concepts are
defined in individual sections organized by th@nmenonality. Each section builds upon

the previous until an entire task model is consédic
Notation
Identifier

extendsParent

{ requiredAtribute® — {allowed_ typd, allowed_typ&}
casts Facade

optionalAtribute — {allowed_typg

Figure Al: Abstract Concept Key

www.manaraa.com

144

The notation used for defining each concept issitlated in figure A1l. The
abstract identifier is found on the left-hand safethe figure, in this case ‘lIdentifier’.
Beneath the identifier is an optional extends fiblat designates the parent concept in an
is-extension-of relationship. All concepts haveisdextension-of relationship with the
parent abstract concept. However, this partiadiation is implicit and is not specified.
An optional casts field is also shown beneath tentifier. This field designates any
can-cast-as relationships. This relationship iegplihat the concept may be used in
composition under the signature of the Facade g@indéor example, an ActionSequence
concept may be used as an Action concept underasitign.

On the right-hand side of the figure is the stgna the list of attributes and their
associated types. A superscript ‘R’ denotes thattribute is required and a superscript
‘M’ denotes that the attribute takes multiple valudn some cases, the allowed type is a
value type, realized as an attribute-less abstractept. In most cases, a list of these
possible types will be provided beforehand.

The same notation is used for all four types ofralos operators.

Core Types

In order to begin construction of the task modeljesal core types must first be
defined. These core types create the foundatiavhath other conceptual notions can be
modeled. The types: numeric, integer, percentageyracy and participant are straight
forward as defined below.
Type: numeric— any representation of a real number, includingrdals and fractions.
Type: integek— an integral representation of a real number.
Type: percentage- numeric that is between 0 and 100.
Type: accuracy— {‘approximate’, 'definite’, 'average’}

Type: participant— {‘agent’, ‘human’, ‘you’, ‘me’, ‘opponent’, ‘us’;them’}

www.manaraa.com

14¢

Once those types have been defined the root absiacept, the parent of all

concepts, may be defined.

confidence- { percentage

Concept .
who — { participart}

Figure A2: Abstract Concept — Parent Concept

The core abstract concept is illustrated in figd& The ‘who’ attribute of the
concept defines the owner, or producer, of the ephand the ‘confidence’ attribute
relates their individual confidence in the concegts with the other concepts in this
section, other attributes have been removed dlengih considerations.

Once the abstract concept has been defined, a alipedi type,
‘concept_attribute’, can be defined. This typeersefto a specific attribute within an
existent concept. The ‘concept_attribute’ typsimilar to a pointer, which points to the

storage of an attribute rather than the attribalee itself.

Type: concept_attribute- an attribute in a concept; may pass through coitipos

name — {identifier}

Object .
history — {(Concep}}

Figure A3: Abstract Concept — Object

The object concept, illustrated in figure A3, ig tharent of all objects in the task
model. The generic notion of an object has bedinetkin chapter 4. Each object has a

name, or identifier, as well as a history. Thedrsis entirely application or context

www.manaraa.com

14¢

dependent and may range from a list of actions aletgd upon the object to a list of
events that the object participated in.
Once the core concepts have been defined, the @dign concept and the

Disjunction concept start to form a basis for ttracture of complex concepts.

first® — {(Concep}}

Conjunctin
seond® — {(Concep}}

Figure A4: Abstract Concept — Conjunction

Conjunction is typically used for placing multipncepts within the same

context or container concept, but can also implmtdtiple simultaneous interpretations.

first® — {(Concep}}

Disjunction
seond® < {(Concep}}

Figure A5: Abstract Concept — Disjunction

Like conjunction, disjunction is another way to gpo concepts together.

Typically, disjunction implies either choice or aignty.

Modifiers
One of the most fundamental essentials to buildirgplid task model that can
model the rich expressiveness of natural language account for the modification of
concepts through various notions. The modifier ceph represents that additive

information by leveraging the following types.

Type: modifier _context— {‘another’, ‘other’}

www.manaraa.com

Type: modifier_existend— {‘old’, ‘new’}
The modifier_context type hints that the agent &hawt reference recently
accessed concepts, while the modifier_existent hypes whether the agent should look

at previously defined or non-existent concepts.

Type: modifier_attachmenrt {‘also’, ‘but’, ‘furthermore’, ‘therefore’, ’excep}
Type: modifier_sequence- {first’, ‘then’, ‘finally’}

The modifier_attachment and modifier_sequence tjrgsto the dialogue model
that previous or future concepts should be refez@me relation to the current concept.
Type: modifier_ownership- {*our’, ‘their’, ‘my’, ‘your’}

The modifier_ownership type implies which collectimr sub-collection of
objects to search when finding a reference.

Type: modifier_selectiom- {‘all’, 'each’}

The modifier_selection type allows for entire greugd concepts to be referenced
in varying ways.

Type: modifier_negatior- {'no’, ‘do-not’, ‘not’}

The modifier_negation type allows the concept to doenplimented without
requiring a complex function to handle the completagon of every known concept
structure.

Type: modifier_conditior— {always, never}
The modifier_condition type assists the agent tal@shing continual concepts

or constraining concepts.

Type: modifier— {modifier_context, modifier_existent, modifier_athment,
modifier_sequence, modifier_ownership, modifieresgbn, modifier _negation,
modifier_condition}

Other than trying to figure out how an agent shorddpond to a particular
modifier type, the modifier concept is straightfand. The ‘content’ attribute represents

the concept being modified and the ‘modifier ditite represents the type of

www.manaraa.com

14¢

modification being performed on the concept. Iingportant to note that the modifier
concept casts to the type of its content. Theegfibmay be used in place, as a container,

for a concept of almost any type.

contenf — {Concep}

Modifier
modifier® — {modifier}

Figure A6: Abstract Concept — Modifier

Quantization

An essential aspect to developing a foundation aomodel is the ability to
represent cardinality to any concept, whether egaduggestive. However, before any
concepts may be defined, several cardinality typest first be defined.

Type: custom_numerie- {'none’, ‘a couple’, ‘a few’, ‘some’, ‘most’, ‘alrost all’, ‘all’}
Type: numeric_relative- {'more’, ‘less’}

Type: numeric_change- {'increase’, ‘decrease’, ‘same’}

Type: numeric_required_relative {‘insufficient’, 'sufficient’, 'deficient’, 'excess’}

The numeric type is expanded to represent ambigoousterpretable numeric
representations in custom_numeric. Furthermormenic_relative, numeric_change and
numeric_required_relative add the notion of combpiditg to cardinality. These types
represent some of the ways to express cardinaliaiural language.

The Quantity concept, illustrated in figure A7, megents the duplication of a
concept, or a group of concepts with a specified.siThe ‘value’ attribute represents the
number of concepts while the ‘content’ relationsihgpresents the concepts that are
guantized. Both of these attributes are requir&étle ‘accuracy’ attribute may also be

added indicating the accuracy of the value providEdr relational purposes, a Quantity

www.manaraa.com

14¢

concept is equivalent to nested conjunctions ofsgmme content that includes the same

number of duplications as the given value.

value® — {numerigcustom numeri¢

Quantity < contenf — {Concept
accuracy« {accuracy

Figure A7: Abstract Concept — Quantity

ChangeQuatity contenf — {Concepk
casts Consequere | type — {numeric_changé

Figure A8: Abstract Concept — ChangeQuantity

One of the many relational quantity concepts igsillated in figure A8. This
particular concept, the ChangeQuantity concepdwalithe model to represent a change
in the number of a concept. This particular coheey also be cast as a Consequence

type, which means it may fill the consequencelaita of any concept.

Sets
The last essential aspect in developing a founddbo a model is the ability to
represent sets beyond the ability of conjunctiesjudction and quantification. There are
two important absolute sets, ‘everything’ and ‘nogh. Everything represents the set of
all things, or every concept in the model. Nothiagresents the empty set, a set with no
concepts. Other custom sets can be defined peaidasuch as ‘everyone’, which is the

set of everything such that the thing is a person.

Type: set_absolute {'everything’, ‘nothing’}

www.manaraa.com

15C

Type: custom_set- {‘everyone’}

Set { cardinality — {intege#

Figure A9: Abstract Concept — Set

The set concept is constructed in several ways,eliewall methods share a
common foundation in both casting and functionalityrherefore, all sets share a

common parent known as the Set concept, as iltestia figure A9.

first — {Concep}
EnumerateS8et | second {Concept
extendsSet third — {Concep}

Figure A10: Abstract Concept — EnumeratedSet

One of the ways to represent a set is through eratioe in which each element
of the set is specifically listed. The enumeratedcept, illustrated in figure A10, is built
in such a way. The enumerated set is useful faenmsach concept is listed through
language or for structure such as a sequence iohact The enumerated set extends the
set concept, which means that the set concepp@ent concept and the enumerated set
is a child concept. All of the attributes of thargnt concept, set, is included within the
extended set. Furthermore, any attribute thatatesta set concept may contain an
enumerated set concept as that attribute.

Another way to represent a set is through restigcai particular set with a specific

constraint. The subset concept is constructedhastway. The concept has a ‘superset’

www.manaraa.com

151

attribute that represents the original set ancstriction’ attribute which represents how

to filter out the original set, the concepts thatit get filtered out become the new set.

Subset {superse'ii‘ —{Se}

extendsSet | restriction® — {Concept

Figure A11l: Abstract Concept — Subset

Many dynamic sets are modeled in this way withia Stratagus agent. For
example, ‘engineers’, ‘soldiers’ and ‘training cashpre all subsets of everything such
that the thing is a specific type.

Other concepts have been created which are eqotv@einion, intersection, set

difference and so on, but are not defined heret@length considerations.

Time

Now that the essential elements of the task modek theen defined, various
theories can be constructed, such as time, spaderedation. Time is a necessary
component of a task-oriented model, from the danatf actions to the gathering and
expenditure rates of resources. Time in the Sjustalomain is measured in the number
of cycles from the beginning of the game. Thisvptes the agent with an absolute scale
in which to measure a timeline.

Type: time_absolute- {'begin’, ‘now’, ‘end’}

Certain specific absolute times are predefinedegiB’ or ‘beginning’ refers to
the absolute beginning. In Stratagus, this wowdyxcle 0, the beginning of the game.
‘End’ refers to the end of time. In Stratagusstivould be the end of the game, which
may not yet be known. ‘Now’ refers to the currémte, or in Stratagus, the current game

cycle.

www.manaraa.com

152

Type: time_relative- {'before’, ‘after’, ‘earlier’, ‘later’}
Relative time provides a means for expressing aiogy, or actions, events and

states in chronological order.

Type: rate_absolute {'fastest’, ‘slowest’}
Type: rate_relative- {'faster’, ‘slower’}

Rates provide a means for expressing the gatheriegpenditure of resources as
well as differences in the duration of actions.r Ewample, if an action took to long to
perform a participant may have a desire to incrélsespeed of the action, or make the

action ‘faster’.
Type: time_uni— {'cycle’, ‘minute’, ‘second’, ‘hour’, ‘day’...}
Type: custom_time_lengtx- {'soon’}
Type: time_length- {numeric, (Quantity <content {time_unit}>)}
Various time units are constructed through the @tyaof a particular unit. This
provides a simple means of constructing units atad allows the agent the ability to

reason about units the same as they would reagart aby other concept.

begim® — {time_absolutg
Timespan { end® — {time_absoluté
value — {time_lengthcustom time_length}

Figure A12: Abstract Concept — Timespan

The Timespan concept, illustrated in figure Al2,capable of measuring an
amount of time that passes between two eventss iShessential in allowing actions to

have duration.

www.manaraa.com

15¢

Space
Space is another necessary component of a taskedienodel from providing
locations or directions of actions to calculatimpsand distances. Space in the Stratagus
domain is measured in the number of cells. Thavides the agent with an absolute
scale in which space can be measured. Spacedsrufize Stratagus domain in order to

select locations to construct buildings, explorayarand attack.

Type: space_set_absolute {'everywhere’, ‘nowhere’}
Type: space_set_relative {'bigger’, 'smaller’}

Space has a set component, which is representéek[space set absolute and
space_set_relative types. The largest space ‘s&eigywhere’ which represents all
space, while the smallest space set is ‘nowher&wtepresents the empty set of space.
In addition, relativeness is given through notioh&igger’ and ‘smaller’.

Type: space_referenee {‘the-world’, ‘current-reference’, ‘current-locatn’}

Space also has a reference type which changestiower ‘the-world’ refers to

the ‘everywhere’ set, ‘current-reference’ refershe location of the currently referencing

object and ‘current-location’, refers to the cutriercation under focus.

Location {

Figure A13: Abstract Concept — Location

The notion of space is constructed first throughrtbtion of a point. In TCL, this
is known as a Location concept, illustrated in fegd13. This concept is the parent of
all of the various ways to represent a locatioojuding a point in space, a direction or

even a restriction with reference to another lacati

Type: length_unit— {"cell’, 'meter’, 'mile’}

www.manaraa.com

154

Type: length_absolute- {numeric, (Quantity <content {length-unit}>)}
Type: custom_length_relative {'near’, ‘far’}
Type: length_relative— {'longer’, ‘shorter’}
Type: length— {length_relative, length_absolute, custom_lengthative}
Distance is measured as the length between twtidnsa Just as ‘duration’ was

measured as a Quantity of time units, Distanceaasured by a Quantity of space units.
Type: direction_unit— {'degree’}
Type: direction_absolute- {numeric, (Quantity <content {length-unit}>)}

Type: custom_direction_absolute {'north’, ‘east’, ‘south’, ‘west’, ‘up’, ‘down’,
‘right’, ‘left’}

Type: custom_direction_absolute {'north of’, ‘east of’, ‘south of’, ‘west of’, ‘alove’,
‘below’, ‘right of’, ‘left of’}

Direction is measured based on a reference gradier@tratagus, north, south,

east and west are well defined.

Directionlocation | directiom® — {direction_relativg
extendsLocation | referencé — {(Objec),(Location}

Figure Al4: Abstract Concept — DirectionLocation

A location can be defined in terms of a directielative to another location. This
is similar to a subset of space where the regirias all space that is in a direction with
reference to the location. The DirectionLocati@naept, illustrated in figure Al4, is
such a location.

Another way to represent a location is through pnity. This is similar to a
subset of space where the restriction is all sphatis within a certain distance with

reference to a location. The Proximity concepgush a location.

www.manaraa.com

15¢

Proximity distance® — {length
extendsLocation | referencé — {(Objecd,(Location}

Figure A15: Abstract Concept — Proximity

directiom® — {direction_relativé
distance® < {length
referenc€ — {(Objecd,(Location}

RelativeLoation
extendsLocation

Figure A16: Abstract Concept — RelativeLocation

The RelativeLocation concept combines both distaffoen a location and
direction with respect to a location into a singtecept. This is the equivalent of either
Conjunction or Intersection of both Proximity andrdgtionLocation where both
reference locations are the same.

Other space concepts are used to create pathgymeasa, define perimeters and
so forth. Furthermore, the combination of time apéece concepts can create notions of

speed and flow. However, they are not discussesl dge to length considerations.

Relation, States and Events
The final necessary component of a task-orientedeindefines relations, states
and events. These are critical in defining obyedj actions, and the state of the world.
Type: numeric_relationship- {greater-than, less-than, at-least, at-most, ¢qual
Type: ontological_relationshig- {is-a, has-a, is-child-of, is-parent-of, is-sinmi@}

Type: relationship— {numeric_relationship, ontological_relationship}

www.manaraa.com

15€

Various relationship types provide a foundation éxery way to compare two

concepts or a concept to definable values. Ontytiyes are discussed in this appendix.

_ _ relationship® — {relationslip}
MagnitudeRlation

magnitud€ — {numerigcustom numeric(Quantit
extends Relation g { G - ¢(Q W}

referenc€ — {(Concep}}

Figure A17: Abstract Concept — MagnitudeRelation

The first type of relation is the MagnitudeRelatmancept, as illustrated in figure
Al7. The ‘reference’ attribute is a concept thaistirbe quantifiable. The magnitude of
the concept is compared with the ‘magnitude’ atiiebdepending on the ‘relationship’
attribute. Relations have multiple purposes. héyt are stated, then they are given as a

fact, if they are queried then they are asked,sanfdrth.

_ relationshp® — {relationshp}
CompareRlation

referencé® — {(Conce
extends Relation { Y

referenc@® — {(Concep}}

Figure A18: Abstract Concept — CompareRelation

The second type of relation is the CompareRelationcept, as illustrated in
figure A18. The ‘relationship’ attribute definesvia the ‘referencel’ attribute is to be
compared to the ‘reference2’ attribute.

The state in time concept attempts to encapsulstata in the world with respect

to a particular time in the world. The ‘time’ dtinte defines the time, absolute or

www.manaraa.com

relative, while the ‘content’ attribute refers toetstate. In almost all cases, the ‘content

attribute’ of a state is represented through atRelaoncept.

StateInTire | contenf — {(Concep}}
extendsState | time — {time_absolutetime_ relative

Figure A19: Abstract Concept — StatelnTime

from® — {(Statd}

StateCha
" { to® — {(Statd}

Figure A20: Abstract Concept — StateChange

The state change concept describes a transitiom énoe state to the next. This
concept is used in describing changes in the wortdiiding consequences or side effects
of actions.

Once relations and states have been defined, ewants be constructed.
Typically, an event represents a change in the sththe world, whether the beginning
or end of an action or a change in some attribis®me object.

Type: eveni— {begins, ends, completion, created, destroyedalaap halted, changed}

A generic event type attempts to encapsulate theuschanges in the world.
The changes ‘begins’, ‘ends’, ‘completion’ and tedl refer to actions or the behavior of
actors. ‘Created’ represents when a new objenttisduced and destroyed represents
when an object is removed. ‘Capable’ representsnwdn action can be executed, and

‘changed’ represents a change in an attribute jecab

www.manaraa.com

15¢

Event { evenf — {(Concep}}
type® — {even}

Figure A21: Abstract Concept — Event

A generic event type is able to represent the nitgjof events within TCL. The
Event concept is illustrated in figure A21. Thgpe’ attribute is the event type as
described above and the ‘event’ attribute is thecept that is checked against the type.
For instance, if the event type was ‘completiorerththe event attribute would be an

action, action sequence, plan or procedure.

Objectives

Objectives have been discussed in chapter 4 inirttieduction of the task
communication language. Due to length considamnatithe specification provided below
does not have all of the attributes discussed pusily, but has enough to understand the
basics behind an objective.

Type: objective— {achieve, avoid, maintain, preserve, cease, test}

Objectives have varying types. ‘Achieve’ attemjotsachieve an action or a state
in the world. Conversely, ‘avoid’ attempts to avdhe action or state. ‘Maintain’
attempts to reach a state if it is not true and tkeep that state true. On the other hand,
‘preserve’ only attempts to keep it true. If a gpeved state fails the objective will
terminate, rather than try to achieve the statéeasSe’ attempts to exit a state or action
and ‘test’ attempts to test the states value.

Type: priority< {*high’, ‘asap’, ‘low’, ‘normal’}
Objectives have varying priority that helps to teeaonflicts as they occur.
The Objective concept, illustrated in figure A22yvers the basic notion of an

objective. The ‘result’ attribute is an actionstate and the type describes what should

www.manaraa.com

be done with that state. The ‘priority’ attribusdlows objectives to supersede one

another in case of conflicts.

result® — {(Concep}}
Objective < type — {objectivé
priority — { priority}

Figure A22: Abstract Concept — Objective

One of the ways the agent receives objectivesr@ithh the expression of desire.
The Desire concept, illustrated in figure A23, ibasic representation of an objective by
wrapping the objective within a desire concept. e Timagnitude’ attribute allows the
participant to express urgency or the strengthesird, such as ‘would be ok’ or ‘really

want'’.

objectivé’ — {(Concep}}

Desire] ,)
{ magnitude—~ {custom _desire_magnitudg

Figure A23: Abstract Concept — Desire

Actions, Procedures and Plans
Actions are discussed in detail in chapter 4. Buéength considerations, the
specification provided below does not have all lué attributes discussed previously.

However, it does include several new attributesweae not previously discussed.

Type: action_op— {execute, halt, pause, resume, postpone}

www.manaraa.com

16C

The action_op type represents what can be doneanitiction, with respect to

acting the action out. The action may be executalied, paused, resumed or postponed.

name - {identifier}

performef — {(Objecd}

target — {(Objecd}

prerequisie — {(Action),(Even),(Statg}
location — {(Location), (Distance, (Proximity)}
Action < intent < {(Action)}

priority — { priority}

method - {(Referenci

team {nodifier _ownership

focus { parametey

consequere— {(Consequera}

Figure A24: Abstract Concept — Action

The Action concept, illustrated in figure A24, epsalates the basic notion of an
action. The only required attributes are the narhéhe action and the performer. A
target object may be added as the target of thenacThe ‘prerequisites’ attribute states
what must be true before the action may executke ‘Tcation’ attribute may either
describe where an action must take place, the rdeltbgy behind the action or a target
location for the action, depending on the domalirihe ‘intent’ attribute describes what
action or objective is intended after the actioauscessful.

One important aspect is the ‘method’ attributewtych the participant can assist
in defining how an action is to be carried out.pitglly, in TCL this is a reference to an

object, tool or action.

www.manaraa.com

161

first — {(Action}
seond ~ {(Action)}

ActionSegence
g third — {(Action)}

Casts Action

consequere ~ {(Consequera)}

Figure A25: Abstract Concept — ActionSequence

The ActionSequence concept describes an ordereaof setions that are carried
out in a specific sequence. It is generally useddscribe the actions that make up a
procedure.

There are various to define how an action is exsbuivhether it is executed
continually, triggered on an event and so forthypigally, this is based the notion of a
condition, which may either be a state or an evefhese conditions allow for such

actions such as ‘whenever X do Y’, ‘if X do Y’, ‘Wl X do Y’.

Type: condition_reference- {(Event), (State)}

The condition_reference type allows either an everstate concept.

Type: condition_absolute- {‘always’, ‘never’}

As with most concepts in a task-oriented domaimdd@mns are broken into sets.
The always condition represents the set of all ttmms$, where the never condition
represents the empty set, or under no condition.
Type: condition_custom- {'whenever-necessary’}

The condition_custom type allows various speciafignditions, such as

‘whenever-necessary’, which states that the camdis true when it needs to be true.

Type: condition— {condition_reference, condition_absolute, conditioustom}

www.manaraa.com

162

conditiom® < {conditior}
action® — {(Action}
consequere — {action: consequerg

Continual Ation
Casts Action

Figure A26: Abstract Concept — ContinualAction

objectivé — {(Action), (Objective}
proceduré — {(Action),(ActionSegencé}
consequere { procedure consequerg

Procedure
Casts Action

Figure A27: Abstract Concept — Procedure

objective’ — {(Action), (Relation)}
method ~ {(Action), (Referency}
duration — {????}

variation {????}

procedure— {(Action), (ActionSeqgencg}
who ~ {???7}

consequere { procedure consequerg

Plan
Casts Action

Figure A28: Abstract Concept — Plan

The ContinualAction concept, illustrated in figuk@6, is one of the many action-
execution concepts defined in TCL. This particutancept allows an action to fire
whenever the condition attribute has been met. eOthpes of action-execution are

described above; however, their specificationdefteut due to length considerations.

www.manaraa.com

165

The Procedure concept, illustrated in figure A2@presents a particular
methodology and sequences of actions that musatred out in order to perform some
objective or higher-level action.

A plan is similar to a procedure; however, the pleoncept is typically
constructed in order to perform an action undepecsic set of circumstances, while a

procedure typically defines an action under noroealditions.

contenf — {(Concep}}
RestrictiorQuantity | current — {numerigcustom numeri¢
Casts Consequere | required — {numerigcustom_numeri¢

polarity® < {numeric_required_ relativg

Figure A29: Abstract Concept — RestrictionQuantity

The RestrictionQuantity concept is one of the uasiconcepts that represent a
consequence. A typical consequence of an actitimaisresources are used in order to
perform the action. A consequence of that actiauld/ then be reduced resources or
even a shortage of resources. The Restriction@uaaincept models that shortage, but

it does need not to be limited to deficiency.

ActionPrecedence | first® — {(Action)}
extends Precedence | second® — {(Action)}

Figure A30: Abstract Concept — ActionPrecedence

Priorities help to reduce the number of conflictiofpjectives and actions;

however, in some circumstances it is not enoughrdpresent the participant’s

www.manaraa.com

164

preferences. Precedence is one of the variousptsased to resolve those conflicts as
they occur. The ActionPredence concept expressesadtion that one action is to take

precedence over another.

Queries
Now that objectives and actions have been specifi€lis section will define
some of the concepts that cross over toward therzontative aspects introduced into
the task-oriented domain. One of the most fundaaheaspects is the ability to ask
guestions about objects, methods, actions or states
Questions are handled in a variety of ways as ssrid@ed below under the query
abstract operator. Some of the questions are édndla structured form, phrasing the

guestion in a particular way. These concepts sgmtethose forms.

contenf < {(Concep}}

QueryParareter | parametef — {concept parametey
extendsQuery | options {(PossiblePeameterValieg}
suggestion- {(Concep}}

Figure A31: Abstract Concept — QueryParameter

The QueryParameter concept is used to structureestign relating to the value
of an attribute of a particular concept. In thektariented domain, the attribute of a
concept is also referred to as a parameter. ThesiMjParameter concept is a child of
QueryParameter that defines no new attributess iBhiypically used by the agent when
a certain parameter is required and must be andwmstere anything can be continued.
The additional child concept is used to structheeghrases in such a way to denote that

it must be answered rather than just denoting sityio

www.manaraa.com

16t

content— {(Concep}}
parameter— {concept parametey

PossiblePeameterValies Ie_ngtH* ~ {integet
first — {valug

second — {valug

Figure A32: Abstract Concept — PossibleParameterd&l

The PossibleParameterValues concept is a meamsitoegate the possible values
of a concept’s attribute. This is sometimes useghrasing a QueryParameter query,
such as “What do you want to mine, crystal or tuer®?”, however it can also be used by

the dialogue model to match various incoming cotg&ppreviously posed questions.

Changes in Concepts
Another important aspect in expressing conceptoimmunication is the ability

to discuss change, whether it is changes in plabigcts or states. There are several

different ways to represent a change. The togethre discussed below.

Change { original® « {(Concep}}
new' < {(Concep}}

Figure A33: Abstract Concept — Change

The Change concept refers to a change where thecoeeept is placed into the

exact context of the original. This type of concepgenerally used for interpretation
correction or additive information.

www.manaraa.com

16€

original® — {(Concep}}

Modification
madified® — {(Concep}}

Figure A34: Abstract Concept — Modification

The Modification concept is another way to représdange. This concept refers
to changes where the modified concept is the sangecompatible type as the original
concept. This type of concept is generally useddiscussing the changes in concepts

currently under discussion, such as planning ootiggpn.

original® < {(Concep}}

Refinement
refinement — {(Concep}}

Figure A35: Abstract Concept — Refinement

The Refinement concept is a restriction on the Nication concept where the
refinement concept must be a small deviation froedriginal. This type of concept is
generally used for adding a parameter to a conseph) as adding a target or performer

to an action.

Argumentation
Another important communicative aspect of the tas&nted domain is the
ability to explain the reasoning behind an actionstate. This is done through
argumentation, the building of explanations, argat®@nd conclusions.
The Inference concept is a type of relation thatesents a piece of reasonable

knowledge, generally in the form ‘If X is true th#mmust be true.’

www.manaraa.com

Inference if ® — {(Relation)}
Casts Relation | ther® — {(Concep}}

Figure A36: Abstract Concept — Inference

givenfact! — {(Concep}}
assumefact — {(Concep}}
Argument { givenrulé" — {(Relation)}
assumerulé {(Relation)}

conclusiof — {(Concep}}

Figure A37: Abstract Concept — Argument

The Argument concept builds a semi-formal proofpngsrarious facts and rules
and formulating a conclusion. This concept buildgpressions along the lines of
‘Because X and Y, then Z'. The various attribubéghe argument concept may have
multiple values associated with them.

The ‘givenfact’ attribute quotes a state of the liorThe ‘assumefact’ attribute
postulates a state of the world. The ‘givenrulirtilaute quotes a relation, such as an
inference, that represents knowledge of the wofllde ‘assumerule’ attribute postulates
knowledge of the world. The ‘conclusion’ attributeaches a conclusion about the

argument.

contenf < {(Concep}, (Operaton}

Explanation _
explanation {(Argumeny}

Figure A38: Abstract Concept — Explanation

www.manaraa.com

16¢

The Explanation concept links an explanation, saghn Argument, to a concept,
expressing the reasoning behind the concept. »angle, if the ‘content’ attribute is an
action that is performed, then the ‘explanationtilatite represents why the action was

performed.

Conclusio®f { argument’ — {(Argumenj}

conclusiorf — {(Concep}}

Figure A39: Abstract Concept — ConclusionOf

Another way to express the conclusion of an argungeto express it outside of
the argument itself. This expresses the factttietonclusion is added, meaning that the
generator of the message is making, querying opgsiag that conclusion. This is
equivalent to using the Modification concept to g3 the original argument and the

new argument with the conclusion internally attathe

Autonomy

Autonomy represents the ability of the agent touacter its own knowledge and
experience. Autonomy is a very important aspectmottiple participants in a task-
oriented domain. For instance, when should thetsask the human participant for help,
such as a decision or permission, or when sho@dgent not be a bother. Some of the
core concepts of autonomy are discussed below.

One of the ways to represent autonomy is with pgsion. Permission represents
what the agent is allowed, or not allowed, to ddne Permission concept states that the
‘responsible’ attribute has permission under théharty of the ‘authority’ attribute to

produce the operator or perform the concept urigefcontent’ attribute.

www.manaraa.com

contenf < {(Concep}, (Operatoi}
Permission < responsi® — { participart}
authority® — { participart}

Figure A40: Abstract Concept —Permission

The ActionPermission extends the Permission conaegtding the required
‘responsible’ and ‘authority’ attributes. The ‘dent’ attribute is further restricted to an
action and the ‘type’ attribute indicates what noaymay not be done with that action.
This type of permission is also extended to descnbat resources may be used during a

specific action and so forth.

ActionPernssion { contenf — {(Action)}

extends Permission | typd® — {action_op}

Figure A41: Abstract Concept — ActionPermission

An autonomic shift represents a change in the le¥edutonomy of the agent.
Autonomic shifts are generally represented throgiginting or denying permissions, but

the AutonomicShift concept encapsulates that changatonomy during a discussion.

contenf < {(Concep}}
Autonomic8ift { responsié® { participart}
authority — { participart}

Figure A42: Abstract Concept — AutonomicShift

www.manaraa.com

17C

Feedback

A relatively new property of human-agent communaratin the task-oriented
domain is the ability of a participant to providetiae feedback to other participants.
Because of the recent introduction of this propettis section will go into more detalil
than previous sections.

Type: feedback _absolute {'positive’, ‘negative’, ‘neutral’}

Generally, feedback is positive, negative or neéutkdowever, as will be seen in
the forthcoming types, feedback can come in a tyadaescales.

Type: feedback_satisfactien {'satisfied’, ‘unsatisfied’, ‘over-satisfied’}

Satisfactory feedback designates whether the paatitis satisfied, unsatisfied or
overly satisfied with any concept in the domain.
Type: feedback _confidenge {'sure’, ‘unsure’}

Confidence feedback designates the level of confidehe participant has with a
particular concept. For example, if a plan is jsga, than the participant may provide
feedback that expresses lack of confidence thatldrewill be successful.

Type: feedback_agreement {'agree’, ‘disagree’}

Agreement feedback designates the level at whiehp#rticipant agrees with or
disagrees with a particular concept. For example,conclusion is asserted, than the
participant may provide feedback that expressesydeement with the conclusion.

Type: feedback_relative- {'better’, ‘worse’, ‘indifferent’}

Along with various scales of feedback, relativedte@ck designates feedback

towards a change. The change may not be imphait,rather relative feedback could

come from the performance of an action, for instanc

Type: feedback_emotion- {'pleased’, ‘upset’, ‘angry’, ‘confused’, ‘saddetiie
‘frightened’, ‘bored’, ‘worried’, ‘excited’, ‘eagéey

www.manaraa.com

171

Another type of feedback that is introduced by thenan element is that of
emotional response. Emotional response is beylmaddope of this dissertation, as the
focus is on practical task-oriented communicatiddowever, it is mentioned here as
future work may adapt to such response.

Type: feedback _amoumrt {'too-much’, ‘too-little’, ‘just-right’}

Feedback may also be generated within a specifitegt one of which may be
about the methodology of an action, for instantfeone participant performs an action
that creates resources, another participant mayidgedeedback that the first did not

create enough.

Type: feedback— {feedback_absolute, feedback_satisfaction, feedbmmfidence,
feedback agreement, feedback_relative, feedbacki@méeedback amount, ‘no-
opinion’}

contenf < {(Concep}, (Operaton}
Problem < focus« { paramete¥
type — { feedback

Figure A43: Abstract Concept — Problem

Of the many ways feedback can be incorporated timotask-model, the two
prevailing ones are mentioned here. One relatgmsitive feedback, while the other
relates to negative feedback. In TCL, positivedfek is represented as an affirmation,
while negative feedback is represented as a problem

The Problem concept, illustrated in figure A43, reents a problem the
participant has with a concept, operator or anbaitie of a concept. The ‘type’ attribute

specifies the type of feedback.

www.manaraa.com

172

problenf — {(Problem)}

Solution))
{ solution — {(Action),(Concep}, (Operaton}

Figure A44: Abstract Concept — Solution

If problems are introduced, so must be solutiofise Solution concept represents
a simple solution to a problem. The solution isggally an action, but may include any

concept or operator.

contenf < {(Concep},(Operaton}

Affirmation
{ type — { feedback

Figure A45: Abstract Concept — Affirmation

The Affirmation concept expresses positive feedlsmbut a concept or operator.
Affirmative feedback is generally used to buildorihe preferences of the user model of

a participant as well as a reward for agents capafaleinforcement learning.

Interpretation

Another relatively new property of human-agent camioation in the task-
oriented domain is the ability to discuss intergtiens, as well as pass interpretations of
concepts to the agent. Again, because of the reagoduction of this property, this
section will go into more detail that previous saus.

The first step toward introducing interpretatiortoirthe TCL model is adding
references. References can take a variety of fohmwsvever in the task-oriented
experiments performed during the course of thissatdiation; object and concept

references were prevalent.

www.manaraa.com

17¢

Type: reference_objeet {‘'one’, ‘them’, ‘it’, ‘that’, ‘him’, ‘her’}
Type: reference_concept {‘'one’, ‘it’, ‘that’}
Type: reference— {reference_object, reference_concept}
An object reference is a reference to a particoltgect, such as an engineer, or a
training camp. A concept reference is a referea@previous concept such as an action,

or an answer.

referencé — {(Concep},(Se),referencg

Reference
content— {(Concep}}

Figure A46: Abstract Concept — Reference

The Reference concept attempts to enhance theenetertype by adding a
‘content’ attribute that can join with the referenapon resolution. Such attachments
make ‘one at each camp’ possible. In this statémene’ is the reference and ‘at each
camp’ is the content, modeled as a modifier.

The attached listing from an example human sessi@ppendix C uses implicit
references, where ‘an engineer’ is treated as antifter rather than a reference. This
was done to simplify the output listing, but iiigportant to note that these are references

and are resolved as such.

contenf < {(Operatoi}

Meanin
g { meaning~ {(Concep}}

Figure A47: Abstract Concept — Meaning

www.manaraa.com

174

The next step towards introducing interpretatioriht® TCL model is by adding
meaning. Meaning expresses the meaning of a pkttipreviously uttered operator.
This added information helps to resolve the amitygiaund within operators and builds
into the user model. The Meaning concept is d@itior reasoning about the added

information in such statements as ‘What | mean iss.well as corrective dialogues.

Nomenclatte { usag® — {texd

Casts Knowledge | meaning® — {(Concep}, (Referenci

Figure A48: Abstract Concept — Nomenclature

The Nomenclature concept encapsulates the connebtween an expression
and the meaning of that expression. Nomenclagiessential in building a user model
and interpretation model for expanding the knownglistic capability of the
interpretation mechanism. The agent does not bavaow about the interpretation.
However, it should at least know that there is samterpretation for purposes of

discussion.

Interpretaion { contenf — {(Concep}}

Figure A49: Abstract Concept — Interpretation

The Interpretation concept is another way the agantdiscuss the interpretation
of a particular concept without knowing about tméerpretation itself. The concept
allows the agent to reference the content attributeterpretation for purposes of

discussion.

www.manaraa.com

17¢

Interactive Operators

Now that various concepts have been defined aniajharspecified, this section
attempts to specify the operators that act uposetltencepts and what they mean. The
operators of TCL are divided into two groups, theeiactive operators and the agent
operators. Interactive operators influence corgefmward communication and
interaction, while agent operators represent astiaken internally by the agent.

Interactive operators of the practical communicatenguage theory are defined
in Chapter 3. They represent the operators that@mn the meaning-action concepts that
are shared across the communication-behavior spectiThese operators are defined in

individual sections organized by their commonality.

Notation

The notation of operators is the same as the patased for concepts.

Core Types
In order to construct a task operator, several ¢gpes must first be defined.

These core types create the foundation of whichratperators can be modeled.

Type: intent— {execute, rate-numeric, record, query, learn, @ata, adopt, plan,
abandon, fix, procedural}

The intent type is essential when dealing with essational modes, tracking and
interpretation. The intent types shown in this eappx are the intents used in the
example human session listing in appendix C. Tkention refers to what the system is

intending to do with the individual concept.

who® « { participart}

Operator < _
intent — {intent

Figure A50: Abstract Operator — Parent Operator

www.manaraa.com

17¢

The core abstract operator is illustrated in fighs®. The ‘who’ attribute of the
operator defines the owner, or producer, of theape and the ‘intent’ attribute relates
their assumed intent for producing the operators wAth the other operators in this
section, other attributes have been removed diengih considerations.

The Conjunction and Disjunction operators stafoto structure behind complex

operators.

first® — {(Operaton}

Conjunctio
seond® — {(Operaton}

Figure A51: Abstract Operator— Conjunction

Conjunction is typically used to group multiple op@rs to the same message,

when the message carries multiple meanings.

first® — {(Operaton}

Disjunction
seond® < {(Operaton}

Figure A52: Abstract Operator— Disjunction

Disjunction is typically used to represent ambiguit the interpretation of a
message. Multiple meanings are attached to thes sapssage and the meaning that
makes the most sense is generally followed.

Both the conjunction and disjunction of operataxsceite within the rule engine
up until the agent operator by using a “result#itsh. This switch causes the agent

operator to return rather than to fire. This abBowResolveConjunction and

www.manaraa.com

ResolveDisjunction operators to be used to attetoptinderstand the variations in

structure.

Simple Messages
The simplest and most often used message in tashted dialogue is
acknowledge. The acknowledge operator has no ehrther than what it extends from

the parent operator.

Tell {contenf — {(Concep}}

Figure A53: Abstract Operator — Tell

Another simple message is that of a Tell operatoere a concept is told to the

participants. Tell is generally the default operat no other operator is detected.

Assert {contenF ~ {(Feedback feedback(Meaning}

Figure A54: Abstract Operator — Assert

The Assert operator is similar to the Tell opera®wcept that assert is generally

used for feedbacks and meanings.

Notify {notificationR ~ {(Eveni}

Figure A55: Abstract Operator — Notify

www.manaraa.com

17¢€

Warn {contenf ~ {(Problem), (Consequere}, (Statg, (Even), (Concep}}

Figure A56: Abstract Operator — Warn

Two other simple messages are the notificationnoéeent or the warning of a
state, event or problem. These five operatorgeferred to as simple not only because
they do not yield complex structure, but also beeathey are neither forward nor
backward chaining. Although a tell operator camstimes be interpreted as an answer,

typically these operators do not directly link ttger with other operators.

Orders and Actions
Giving orders, formulating plans, executing or ati@ming actions are all essential

parts of task-oriented communication.

Order {ordersR — {(Action)}

Figure A57: Abstract Operator — Order

The Order operator allows the participant to oresther participant to carry out

an action, action sequence, plan or procedure.

Confirm {confirmatbnR — {(Concep}, (Operaton}

Figure A58: Abstract Operator — Confirm

The confirm operator allows the second particigantonfirm the orders of the

first. The confirm operator also allows all kinadg confirmations including the

www.manaraa.com

confirmation of concepts such as modifications esigks. Operators may also be

confirmed such as the confirmation that a notif@matequest was received.

olan { contenf {(Plan)}
focus — {(Concep}}

Figure A59: Abstract Operator — Plan

The Plan operator allows a participant to set tleei$ of the conversation towards
the planning of the ‘content’ attribute with spéxifocus on the concept or parameter

under the ‘focus’ attribute.

Execute {contenf‘ « {(Action)}

Figure A60: Abstract Operator — Execute

The execute operator allows actions, action seqsempdans and procedures to be

executed.

Abandon {contenf‘ ~ {(Action), (Concep}}

Figure A61: Abstract Operator — Abandon

The abandon operator allows actions, action se@septans, procedures, desires,

objectives and other concepts to be abandoned.

www.manaraa.com

18C

Questions
Questions and answers are performed through tlesipective operators as

described below.

Query {quer)ﬁ ~ {(Concep}}

Figure A62: Abstract Operator — Query

The query operator is how questions are postulayes participant. The meaning
behind the query operator depends entirely on tmeept being operated upon. If the
query is a QueryParameter or MissingParameter gonteen the query is a structured
guestion focusing on a particular attribute of aaapt. If the query is operating upon an
incomplete PossibleParameterValues concept, thenptrticipant is asking for the
possible values of a parameter. If the PossibleReterValues concept is filled, then the
participant is asking if those are the possibleapeater values. If the query is operating
upon a relation, then the participant is askinghét relation is true; a conclusion, the
participant is asking if it can be deduced. Thergwf an empty explanation means that
the participant is asking for an explanation, geler'Why’ for a completely empty
explanation.

If the query is operating upon a procedure thenpduicipant is asking for the
procedure if the procedure is empty as in “How & br asking if the procedure is the
correct one if it is not empty as in “Is this how.l If the query is operating upon a Focus
concept then the participant is inquiring aboutdbheent focus of the conversation.

Further queries and what they mean are omittedtduength considerations.

However, for the sake of generality, when most mplete concepts are queried, the

www.manaraa.com

181

participant is asking for the missing pieces. @a other hand, when most complete
concepts are queried, then the participant is gsKihis correct given the context.

Type: answer_pola« {‘affirmative’, ‘negative’, ‘ambiguous’}

The simplest answer is an affirmative or negatyes, or no, answer.

polarity® — {answer_polar}

Answer _
{ confidence- { percentage

Figure A63: Abstract Operator — Answer (yes/no)

The yes or no answer operator leverages polarigrder to state whether it is an
affirmative or negative answer. A confidence rgtaiso allows the participant to state
their level of confidence in the answer. Theseetypf answer generally result from a

query of a completed concept.

Answer content — {(Concepj}
focus — {(Concep}, paramete}

Figure A64: Abstract Operator — Answer (with cortien

The other type of answer generally results from dgouery of an incomplete
concept. The answer operator in this case, retilmasoncept with the missing pieces
filled in. It is up to the text-generator to kndhe differences between the postulated
concept and resultant concept and leverage thigrelifce in generation. However, the
concept answer operator can also place focus @mtydar concept or parameter within

the content concept.

www.manaraa.com

182

Suggestions and Negotiation
Another type of interaction in task-oriented dialegis the proposal, rejection,
agreement and commitment to shared tasks and selfese types of operators allow

for mutual planning, negotiation and persuasion.

proposafl — {(Modification), (Actior),(Concep}}

Propose § © =
justification — {(Concep}}

Figure A65: Abstract Operator — Propose

The Proposal operator introduces a concept into shared focus of the
participants, often requesting their adoption @ttboncept. For example, an action or
plan may be proposed for execution. A justificatimay be provided during the
introduction in order to give evidence suggestirg/w should be adopted. Children of

the Proposal operator include Suggest and Offer.

original — {(Modification), (Action),(Concep}}
CounterRopose

proposal — {(Modification), (Actior), (Concep}}
Extends Propose

justification — {(Concep}}

Figure A66: Abstract Operator — CounterPropose

The CounterPropose operator rejects the concegitavkd focus and introduces a
new or modified concept. A justification may beoyided which either justifies the
rejection of the original concept, justifies th@posal of the new concept or both.

The accept operator accepts the given conceptllysuaer proposal.

www.manaraa.com

18¢

Accept | 2cceptace” — {(Concep), (Operato)}
justificaon ~ {(Concep}}

Figure A67: Abstract Operator — Accept

Reject I’.ejEF:'FIOFITz ~ {(Concep}, (Operaton}
justificaton — {(Concep}}

Figure A68: Abstract Operator — Reject

The reject operator rejects the given concept, lvimeed not necessarily be a
proposal. Typical justifications include restrizts when rejecting actions or plans;
arguments when rejecting answers; or can even gsoeeinclude desires, as in ‘I don

not want to’.

Requests
The final type of interaction discussed in this epgix pertains to requests.
These types of operators allow for Permissionsdiatjon and shifting the ownership of

shared resources.

request — {(Concep}, (Operaton}

Request ¢ = |
{ justification — {(Concep}}

Figure A69: Abstract Operator — Request

Similar to the query operator the request opertdkes on different meanings

based on the concept or operator being requesibd. request of an action, rather than

www.manaraa.com

184

the order, implies politeness. The request of m=ion may also imply politeness, or
may also imply autonomic boundaries that need tonbmlified. A request for
confirmation leads to reasoning about what is bemfirmed.

The request for an operator generally implies tin&t requested operator be
performed by the receiver of the request. For glanthe request for the notify operator

refers to the request that the receiver notifyptuelucer of a future event.

contenf < {(Concep}, (Operaton}

Approve <
justification — {(Concep}}

Figure A70: Abstract Operator — Approve

The approve operator approves requests. If theestqgs permission, then the
participant grants the permission. If the requesa plan or methodology, then the
participant approves of the plan or methodologyisTdoes not necessarily lead to an

order, but rather approves the plan for future use.

Den contenf — {(Concep}, (Operaton}
justification — {(Concepj}}

Figure A71: Abstract Operator — Deny

The deny operator typically denies requests, atthaather concepts may also be

denied.

www.manaraa.com

18t

Agent Operators

Unlike the previous concepts and operators intredu@gent operators pertain
directly to internalizing concepts within the agentThe previous operators were
generated to and from text. However, these newab@e ask the agent to operate on the
concepts and generate new operators as a response.

Although there are many evaluation-based operatbes,evaluation is only a
starting point to address the various conceptsr dxample, the agent may evaluate,
agree, adopt and execute an action all in one agmerator. It is up to each individual

agent implementation to decide.

action® — {(Action),(Concep}}

EvaluateAtion < _
intent — {intent

Figure A72: Abstract Agent Operator — EvaluateAgtio

The EvaluateAction operator is responsible for eatihg, planning and executing
actions. If the intent given to the operator igseeute’ then the agent is to evaluate the
action with the intention of executing it. If tirdent given to the operator is ‘adopt’ then

the agent is to evaluate the action with the intém@tdopting it into practice.

query® — {(Query),(Concep}}

EvaluateQer
Y { intent — {intent

Figure A73: Abstract Agent Operator — EvaluateQuery

www.manaraa.com

18¢€

The EvaluateQuery operator is responsible for negipg to all queries. The
agent uses its internal knowledge along with therigd concept to construct a response.

Typically, the response is an answer, but may ladsa query, for sub clarification.

contenf — {(Concepj}

GetPossil#Parametevalues
parameter— { parametey

Figure A74: Abstract Agent Operator — GetPossiklafeaterValues

The GetPossibleParameterValues operator is a cupekator into getting the
possible values for the concept parameter witheesfp the domain and the agent’s

knowledge.

query® — {(Query}

QueryResponseMah
respons@ — {(Concep}}

Figure A75: Abstract Agent Operator — QueryRespbtaeh

The QueryResponseMatch operator is a quick vetifinaoperator responsible
for detecting if the response is a valid answertf@ given query with respect to the

domain and the agent’s knowledge.

proposafl — {(Concep}}

EvaluateRPoposal < . _
intent — {intent

Figure A76: Abstract Agent Operator — EvaluatePsapo

www.manaraa.com

The EvaluateProposal operator is responsible feparding to all proposals,
including objectives, plans and procedures. Theninis generally either ‘plan’ or

‘proposal’ depending on the context.

acceptace® — {(Concep}, (Operaton}
EvaluateAceptance < justification — {(Concep}}
intent — {intent

Figure A77: Abstract Agent Operator — EvaluateAdarpe

The EvaluateAcceptance operator is responsiblenterpreting and recording
when a participant accepts a given concept. Thefigation is used to help the agent

build a user-model or also knowledge about whyctinecept was accepted.

rejectio® — {(Concep}, (Operaton}
EvaluateRjection < justificaton — {(Concep}}
intent — {inteng

Figure A78: Abstract Agent Operator — Evaluate Rigpec

The EvaluateRejection operator is similar to thel&EateAcceptance operator in
that it is responsible for interpreting and recogdiwhen a participant rejects a given
concept. The justification can also be used tp i agent formulate a response, such
as a counter-proposal or re-assertion of a moddoeatept.

The EvaluateProblem operator is responsible fotuatiag a problem produced

by another participant. If the intent of the pexhlis ‘fix’, then the agent should evaluate

www.manaraa.com

18¢

whether or not it should, can, or will fix the pteim. If the intent is ‘evaluate’ then the

agent should evaluate whether or not the conceppreblem.

contenf — {(Problem),(Concep}}

EvaluateRoblem < _
intent — {intent

Figure A79: Abstract Agent Operator — EvaluateReobl

The PermissionDenied operator records when peromiss denied and shift

autonomy accordingly. The PermissionGranted operatidentical in signature.

Permissioenied { permissioff — {(Action),(Concep}}

Figure A80: Abstract Agent Operator — PermissionBeén

The RegisterNotification is a quick operator td tee agent that it should notify

another participant when an event occurs.

RegisterNafication { notification® — {(Even)}

Figure A81: Abstract Agent Operator — RegisterNcdifion

The ApplyMeaning operator is used by the agent wthermeaning of a concept
is changed or meaning is added. This is most afised during reinterpretation or

corrective dialogues.

www.manaraa.com

contenf < {(Concep}, (Operaton}

ApplyMeamg < meaning < {(Concep}}
intent — {intent

Figure A82: Abstract Agent Operator — ApplyMeaning

The EvaluateChangedConcept operator is responfmpleevaluating changes,
including modifications and refinements. The itteraries from ‘execution’ to

‘planning’.

original® — {(Concep}}

EvaluateChngedConagat { new® — {(Concep}}
intent — {inten

Figure A83: Abstract Agent Operator — EvaluateCleai@pncept

knowledgé — {(Knowledgé}

EvaluateKiowledge 1 . ,
intent — {inteng

Figure A84: Abstract Agent Operator — EvaluateKrenige

content — {(Concepj}
EvaluateAtonomicSHt responsig® — { participart}
intent — {inteng

Figure A85: Abstract Agent Operator — EvaluateAotoicShift

www.manaraa.com

19C

The EvaluateKnowledge concept is responsible fapihg the agent to learn, as
in the ‘learn’ intent, or otherwise updating theolnedge of the agent.
The EvaluateAutonomicShift operator is responsilole evaluating autonomic

shifts that occur other than when permission isig@ or denied.

Helper Functions

Helper functions are inline functions that operatethe shared concept graph or
on the structure of shared concepts themselvesy o not produce any rules, nor
change the state of the dialogue-reasoning endihey take the same notation as earlier

operators.

Getlntent

_ { contenf — {(Concep}}
return: intent

Figure A86: Helper Function — Getintent

Getintent returns the intent of the action by meafrite shared concept graph. If
the current concept does not have intent, theradtes the concept back to an operator
that provides the intent. This is function is usegass the intent from the operator to the

evaluate function.

GetGeneradr

contenf < {(Conce
return: (Concep} { {(P

Figure A87: Helper Function — GetGenerator

www.manaraa.com

191

GetGenerator uses the shared concept graph th@egenerating concept. If the
concept was the direct result of an agent opertiten the generator is what was passed

to the agent.

IsRefinement | original® — {(Concep}}
return: bool

refined® — {(Concep}}

Figure A88: Helper Function — IsRefinement

IsRefinement analyses the structure of both thgirai concept and the refined
concept. If the ‘original’ concept contains evéigg that the ‘refined’ concept contains,
and the added information in the ‘refined’ concdpes not collision with the typing of

the ‘original’ concept, then the function returnset Otherwise, it returns false.

return: (Concep}

ParameterMitchinFocs | contenf — {(Concepj}
parametef — { paramete}

Figure A89: Helper Function — ParameterMatchinFocus

original® < {(Conce
AddParamedr J « Pl

parametef — { paramete}
return: (Concep}

value® — {(Concep}}

Figure A90: Helper Function — AddParameter

www.manaraa.com

192

ParameterMatchinFocus looks at recent shared ctsmeeg finds one that is the
same type as the parameter in question and analfy#ewill fit into the concept in
‘content’. If it succeeds, then the concept isimeed. Otherwise, false is returned.

AddParameter creates a duplicate ‘original’ conc@paces the ‘value’ in the

parameter, with respect to the new concept, theemngthe new one.

original® < {(Concep}}
ReplaceParaneter

parametef — { paramete}
return: (Concep}

value® — {(Concep}}

Figure A91: Helper Function — ReplaceParameter

ReplaceParameter is similar to AddParameter extept the parameter is

replaced rather than added.

Collision first® — {(Concep}}
return: bool

second® — {(Concep}}

Figure A92: Helper Function — Collision

Collision analyzes the structure of both concept$.the information in one
concept that is not in the other concept fits wttiie other concepts typing and the same
with the other concept, then the function returoe.t Otherwise, false is returned.

Collision is used to detect whether two concepts lsa merged into a single

concept meaningfully, or if there are any conflis&dween the structures of the concepts.

www.manaraa.com

19¢

It is used primarily in detected if one conceptais extension of another concept, a

common property found within dialogue-based repregns.

Merge { firstR — {(Concep}}

return: (Concep} | second® — {(Concep}}

Figure A93: Helper Function — Merge

Merge is similar to collision. However, merge conds the structure of both

concepts into a new concept and returns it.

GetRootConept

tenf — {(C
return: (Concepy {con ent — {(Concep}}

Figure A94: Helper Function — GetRootConcept

GetRootConcept analyzes the structure of the caraepreturns the most recent
root of the concept. A concept may be composedhinvitanother concept,

GetRootConcept returns the top most parent thattisomposed within another concept.

FindParaméer { root™ — {(Concepj}

return: parameter | searcf — {(Concep}}

Figure A95: Helper Function — FindParameter

www.manaraa.com

194

FindParameter finds the ‘search’ concept within theot’ concept through
analyzing its compositional structure and returrsaeameter to the compositional link

with respect to the root concept. FindParametasesl in the replacement of concepts.

ContainsCacept {contenﬁ ~ {(Concep}}

return: bool contains® — {(Concep}}

Figure A96: Helper Function — ContainsConcept

ContainsConcept detects whether the ‘contains’ epnds contained through
structural composition within the ‘content’ concegtd returns true if it is contained,

false if it is not contained.

GetNextin®t { seft — {(Se)}

return: parameter | focus® — { paramete}

Figure A97: Helper Function — GetNextIinSet

GetNextInSet is a specialty function that relieskaowledge of Set concepts. It
takes the concept under current focus and findstltin the set concept. It then figures
out the next concept and returns a parameter tif it.is not found within the set or it is

the last one in the set then it returns false.

Macro Functions

Macro functions are similar to helper operatorghat they never reach either
participant or interact with any outside concepoperator. Macro functions are often

overloaded and produce new interaction operattfacro operators are responsible for

www.manaraa.com

19t

detecting various operator signatures and caugiagge in resultant operators based on

that signature.

first® — {(Operaton}

ResolveConjnction
second® < {(Operatop}

Figure A98: Macro Function — ResolveConjunction

The ResolveConjunction and ResolveDisjunction dpesadetect specialties
within the concepts. For example, in conjunctiono, do this instead’ (Deny,
Alternative) implies a form of counter-order; ‘Noot unless’ or ‘No, unless’ or (Deny,
Conditional) implies a conditional denial; ‘No, laese’ or (Deny, Justification) implies a
denial with justification; ‘No, <state of the word(Deny, State) may imply deny with a

possible reason. And so forth.

first® {(Operaton}

ResolveDigjinction
sacond® — {(Operaton}

Figure A99: Macro Function — ResolveDisjunction

ResolveDisjunction is responsible for handling thetection, evaluation and
resolution of ambiguity with the assistance of @as agent operators.
RewriteQuery generates a resultant concept wheoneaegl concept is merged

with its response concept. This function is uséénvcollision and merge fail.

www.manaraa.com

19¢

RewriteQuey {quer)ﬁ ~ {(Query}

return: (Concep} | respons8 — {(Concep}}

Figure A100: Macro Function — RewriteQuery

The result of a various responses such as a gaspgnse is typically placed into
a HandleResponse operator that then directs ithéo appropriate operator such as

EvaluateAction if the result is an action or Evaéi@@uery if the result is a query.

tenf — {(Conce
HandleResponse conten {(Concep}}
intent® — {inten}

Figure A101: Macro Function — HandleResponse

original® — {(Concep}}

HandleChage
new' — {(Concep}}

Figure A102: Macro Function — HandleChange

The HandleChange macro is responsible for handithgn a concept changes

due to a Change, Modification or Refinement.

HandleFocs {contenf* ~ {(Concep}}

intent® — {inten}

Figure A103: Macro Function — HandleFocus

www.manaraa.com

HandleFocus is responsible for finding the focus tloé conversation and
restarting it. This is performed through a quefyfazus or sometimes after inactivity,

depending on the agent implementation.

contenf < {(Concep}}

HandleFeebdack
feedback — {(Feedback, feedback

Figure A104: Macro Function — HandleFeedback

HandleFeedback matches the ‘feedback’ to the canlbemg referenced and
attempts to build a new concept accordingly. Bangple, a negative feedback on the

statement of a rate of change builds a problemthigatate of change is too fast or slow.

contenf < {(Conce
HandleReinterpretaton { {(P

intent® — {inten}

Figure A105: Macro Function — HandleReinterpretatio

HandleReinterpretation is used after a correctiisodue has taken place to
change the previous meaning of the ‘content’ concéje new concept and its original
intent should then be re-postulated so that a vegponse can take place. This is
described in more detail in chapter 5, which disessthe various conversational
capabilities including corrective dialogue.

LookForward is an unusual macro in that it is adleo] which is recorded as an

obligation. The ‘key’ is used to determine howrnatch the obligation with future

www.manaraa.com

19¢

operators and concepts. The LookForward macroshlpresolve chaining concepts

such as, “First...Then...Finally...”

concept < {(Concep}}

LookForwad
{ key® — { forward _key

Figure A106: Macro Function — LookForward
Advance {contenfe — {(Concep}, (Operaton}

Figure A107: Macro Function — Advance

The advance macro is used in determining how tamck different concepts.
For example, in set based concepts the focuslisnmented to the next position. In other

concepts, advancing to the next focal point varies.

MergeConcpts first® — {(Concep}}
return: (Concep}

second® — {(Concep}}

Figure A108: Macro Function — MergeConcepts

MergeConcepts is an inline function that is usecenvhollision and merge fail.
For example, when two actions must be merged, tagg®Concepts function knows to
build an ActionSequence for them. Similarly, Mefgmcepts can merge an
ActionSequence with an action by appending theoh&equence. MergeConcepts can

also work through composition such as Plans ande@oes.

www.manaraa.com

eval® — {(Evaluation}
if < them — {(Concep},(Operaton}
els€ — {(Concep}, (Operaton}

Figure A109: Macro Function — if

> { first? — {(Concep}}

return:bool | second® — {(Concep}}

Figure A110: Macro Function — greater-than

- first® {(Concep}}
return:bool | second® — {(Concep}}

Figure A111: Macro Function — equality

The if macro function is one of the ways in whicimétionality can be introduced
into the rules of the dialogue-reasoning enginée eval’ attribute is examined, if the
eval attribute is true then the ‘then’ attributereésurned, otherwise the ‘else’ attribute is
returned. Other such macros are as straightforward

Greater-than is an example of an eval attributed wsghin an if macro. The
greater-than macro requires that the concepts lbatifjable or comparable in some
fashion.

The equality macro is similar to greater-than exdbpt the concepts can also
evaluate if they have the same values in idenstaicture. Note, this does not mean
similar values, as the macro does not have theomg@s to translate between varying

forms of a concept.

www.manaraa.com

20C

APPENDIX B
IMPLEMENTATION DETAILS

This appendix covers the implementation detailstha intelligent agent, the
Stratagus environment and the dialogue-modelingnengs well as their integration.

The appendix is broken into sections with each aomept receiving its on section.

Intelligent Agent Architecture

The intelligent agent used in this dissertatioreaesh was created from scratch in
C++ using various classes to represent atomic ratiobjectives and other concrete
concepts used in TCL. Because the details of dissertation are in the dialogue
capabilities and not in the agent implementatitre, agent implementation itself was
rather simple. Nevertheless, this simplicity destoates that the powerful
expressiveness the agent is capable of is not beaafuthe agent implementation, but
rather the interaction engine to which the agenbrmected.

Rather than using an intention recognition or stigolen based approach, the
agent’s behavior is determined by the agent’s atigeals, being reactive in nature. The
agent carried out simple orders by modeling theexards atomic actions then carrying
out those actions. Some of the reasoning behiacagent, such as the argumentation
provided during extended explanations was done ugiro pre-prepared domain

knowledge provided to the agent.

Strataqus Environment

Stratagus is an open-source real-time strategy ga&mgine hosted on
SourceForge. The Battle of Survival data set weedu Stratagus was chosen for its
dynamic real-time online management of complex uesss and situations. The
modifications made to Stratagus were minimal, dbedrin the system section below. It
is the intention of the author to work with the &agus team in incorporating desired

features back into the main Stratagus source cadeb and made publicly available.

www.manaraa.com

201

The Dialogue Reasoning Engine

An ad-hoc reasoning engine based on the syntax ti#&and JESS was created
for the dialogue reasoning engines. CLIPS couldb®oused due to its lack of nested
templates. Concepts, Operators and Rules aremksented in C++ as simple classes;
agent operators were linked to function-calls wittiie agent implementation. There was

no optimization or reduction in the reasoning eagin

System Integration

The galaxy communicator [29] was chosen for theesgsntegration because of
its flexibility, portability, logging, testing andebugging capabilities. It is a spoke and
hub architecture where messages are passed totml ceommunicator and various
components can subscribe to streams of messagegure FB1 shows the major
components and their corresponding message streams.

The Stratagus environment was modified to allowt texbe entered from and
displayed to a human participant. This was domeutyh slight changes to the games
multiplayer chat feature. An Al Automation streavas created which allows the agent
to query various objects and properties in the gasweell as perform the same actions a
player would perform when playing. This was doheotgh manipulating the game’s
network play feature. A Ul Manipulation stream wsed up that allowed the control of
the screen as well as the detection of selectmmn the mouse.

The intelligent agent is able to access the Ul dalaition stream as well as the
Al Automation stream. A TCL stream allows the agém send and receive TCL
messages as a participant in the conversation. TOlereasoning engine is embedded
into the intelligent agent. The messages sent tr@ragent correspond to messages sent
from the TCL reasoning system intended for the hupsticipant.

The simple parser does not perform natural languagkerstanding but rather

triggers specific pre-defined output messages basethe input text. Similarly, the

www.manaraa.com

20z

generation module does not perform actual messagergtion but rather triggers a

specific pre-defined output message based on thwubWCL. This is because it was

beyond the scope of this dissertation to handledp&ecognition and generation, but

rather to demonstrate the capabilities of TCL, Wwhgfree of natural language.

Stratagus
(Environment)

Intelligent
Agent

Galaxy

- Communicator

Parser

Multimodal Fusion

Generation

Figure B1: The System Integration

www.manaraa.com

20¢

APPENDIX C
EXAMPLE HUMAN SESSION

This appendix contains the output of an example drusession of the system
described in appendix B. The lines in the listavg numbered as shown. The letter
following the line number corresponds to the typeanstruct that is on the line. Table

C1 provides the interpretation of these letters.

Table C1: Session Listing - Line key

Human The human entered the text into Stratagus.
H
S Shared Concept A concept was added to the shanegpt graph.
M Message This is the message (operator) the syistpmcessing.
R Rule A rule fired within the system.
Agent Execution Result of an agent operatorpidiclg its input signature.
A Agent The agent sent a message to the human.
D Display Something that changed with the Stratatisislay.

The shared concept line includes a number correpgnto the identifier
provided for that shared concept. It is importémtnote that there are more shared
concepts that revealed in the listing, but manyewm&moved for brevity. Other such
modifications made for brevity include the remowdl reference concepts down to
identifiers, such as a reference to ‘engineer’.

The definition and descriptions for all of the cepts and operators listed here
can be found in appendix A. Additionally, discuss of the conversational capabilities

demonstrated within this trial can be found in dkap.

www.manaraa.com

Table C2: Example Human Session Listing

204

[001-H]: "Send 7 engineers to mine."
[002-S]: [00001] = (Action
<name mine>
<performer (Quantity <value 7> <content
[003-M]: (@Order <orders (00001)>)
[004-R]: (@Order <orders Action:?A>) => (#EvaluateA
[005-#]: (#EvaluateAction <action ?A> <intent execu
=>{ ($Reject <rejection ?A> <justificati
($Propose
<proposal (Modification
<original ?A> <modified ?C>)>
[006-S]: [00002] = (RestrictionQuantity
<content engineer>
<current 2>
<required 7>
<polarity insufficient>)
[007-M]: ($Reject <rejection (00001)> <justificatio
[008-A]: >> “| can't, there are only two engineers.
[009-S]: [00003] = (ActionSequence
<first (Action
<name train>
<target (Quantity <value 5> <content
<second (00001)>)
[010-S]: [00004] = (Modification <original (00001)>
[011-M]: ++($Propose <proposal (00004)>)++
[012-A]: >> “Should | train more?"
[013-H]: "Yes"
[014-M]: (@Answer <polarity affirmative>)
[015-R]: { (@Answer <polarity affirmative>),
??($Propose <proposal ?A>)?? }
=>{ (@Accept <acceptance ($Propose <prop
--($Propose <proposal ?A>)-- }
[016-M]: (@Accept <acceptance ($Propose <proposal (
[017-R]: (@Accept <acceptance ($Propose
<proposal (Modification <original ?A> <
=>{ (%GetIntent <content ?A>) -> ?C,
(#EvaluateAction <action ?B> <intent
[018-#]: (#EvaluateAction <action ?A> <intent execu
[019-S]: [00005] = (MissingParameter <content (0000
[020-M]: ++($Query <query (00005)>)++
[021-A]: >> “What should they mine?"
[022-H]: "What are my options?"
[023-M]: (@Query <query (PossibleParameterValues)>)
[024-R]: { (@Query <query (PossibleParameterValues
[$Query <query (QueryParameter <content
=> (#GetPossibleParameterValues <content ?
[025-#]: (#GetPossibleParameterValues <content ?A>
=> ($Answer <content (PossibleParameterVal
[026-S]: [00006] = (PossibleParameterValues
<length 2>
<first crystal>
<second titanium>)
[027-M]: ($Answer <content (00006)>)
[028-A]: >> “Crystal or titanium."
[029-H]: "Crystal"
[030-M]: (@Tell <content Crystal>)
[031-R]: { (@Tell <content ?A>),
??($Query <query ?B>)??,
(#QueryResponseMatch <query ?B> <respon
=>{ ("RewriteQuery <query ?B> <response
(%Getlntent <content ?C>) -> ?D,
("HandleResponse <content ?C> <inten
--($Query <query ?B>)-- }
[032-R]: ("RewriteQuery
<query (QueryParameter <content ?A> <pa
<response ?C>)
-> (%AddParameter <original ?A> <parameter

engineer>)>)
ction <action ?A> <intent execute>)

te>)
on ?B>),

)}

n (00002)>)

engineer>)>)>

<modified (00003)>)

osal ?A>)>),
00004)>)>)
modified ?B>)>)>)
2C>) }

te>) =>{ ($Query <query ?C>) }
1)> <parameter Action:target>)

)>),

?A> <parameter ?B>)>] }
A> <parameter ?B>)
<parameter ?B>)
ues:?C)>)

se ?A>) }
?A>) -> ?C,

t ?D>),

rameter ?B>)>

?B> <value ?C>)

www.manaraa.com

Table C2 Continued

[033-S]: [00007] = (Action
<name mine>
<performer (Quantity <value 7> <content
<target crystal>)
[034-R]: ("HandleResponse <content (Action:?A)> <in
=> (#EvaluateAction <action ?A> <intent ?B
[035-#]: (#EvaluateAction <action ?A> <intent execu
[036-M]: ($Confirm <confirmation (00007)>)
[037-A]: >> “Ok"
[038-H]: "Have 7 more engineers mine titanium."
[039-S]: [00008] = (Action
<name mine>
<performer (Quantity
<value 7>
<content (Modifier <modifier more> <
<target titanium>)>)
[040-M]: (@Order <orders (00008)>)
[041-R]: (@Order <orders Action:?A>) => (#EvaluateA
[042-#]: (#EvaluateAction <action ?A> <intent execu
[043-M]: ($Confirm <confirmation (00008)>)
[044-A]: >> “Ok"
[045-H]: "After that have another engineer build 2
[046-S]: [00009] = (Action
<prerequisite that>
<performer (Modifier <modifier another>
<name build>
<target (Quantity <value 2> <content ge
[047-M]: (@Order <orders (00009)>)
[048-R]: (@Order <orders Action:?A>) => (#EvaluateA
[049-#]: (#EvaluateAction <action ?A> <intent execu
[050-S]: [00010] = (Action
<name build>
<performer (Modifier <modifier another>
<target (Quantity <value 2> <content ge
<prerequisite (00004)>)
[051-S]: [00011] = (MissingParameter <content (0001
[052-M]: ++($Query <query (00011)>)++
[053-A]: >> “Where?"
[054-H]: "To the west, near the other generators."
[055-S]: [00012] = (DirectionLocation <reference cu
[056-S]: [00013] = (Proximity
<reference (Modifier <modifier other> <
<distance near>)
[057-S]: [00014] = (Conjunction <first (00012)> <se
[058-M]: (@Tell <content (00014)>)
[059-R]: { (@Tell <content ?A>),
??($Query <query ?B>)??,
(#QueryResponseMatch <query ?B> <respon
=>{ ("RewriteQuery <query ?B> <response
(%Getintent <content ?C>) -> ?D,
(*HandleResponse <content ?C> <inten
--($Query <query ?B>)-- }
[060-R]: (“"RewriteQuery
<query (QueryParameter <content ?A> <pa
<response ?C>)
-> (%AddParameter <original ?A> <parameter
[061-S]: [00015] = (Action
<name build>
<performer (Modifier <modifier another>
<target (Quantity <value 2> <content ge
<prerequisite (00004)>
<location (00014)>)
[062-R]: (*HandleResponse <Action:?A> <intent ?B>)
=> (#EvaluateAction <action ?A> <intent ?B
[063-#]: (#EvaluateAction <action ?A> <intent execu
[064-M]: ($Confirm <confirmation (00015)>)
[065-A]: >> “Ok"

engineer>)>

tent ?B>)

>)

te>) => ($Confirm <confirmation ?A>)

content engineer>)>)>

ction <action ?A> <intent execute>)
te>) => ($Confirm <confirmation ?A>)

generators."

<content engineer>)>

nerator>)>)

ction <action ?A> <intent execute>)
te>) => ($Query <query ?B>)
<content engineer>)>

nerator>)>)>)

0)> <parameter Action:location>)>)

rrent-location> <direction west>)
content generator>)>

cond (00013)>)

se ?A>) }
?A>) -> ?C,

t ?D>,

rameter ?B>)>

?B> <value ?C>)

<content engineer>)>
nerator>)>

>)
te>) => ($Confirm <confirmation ?A>)

www.manaraa.com

20¢

Table C2 Continued

20¢

[066-H]: "Send an engineer to the northeast to buil
[067-S]: [00016] = (Action
<name build>
<target ‘training camp’>)
[068-S]: [00017] = (Action
<name move>
<performer engineer>
<location ‘the northeast’>
<intent (00016)>)
[069-M]: (@Order <orders (00017)>)

[070-R]: (@Order <orders Action:?A>) => (#EvaluateA

[071-#]: (#EvaluateAction <action ?A> <intent execu
[072-S]: [00018] = (ActionPermission
<content (Action <name mine> <performer
<type halt>)
[073-M]: ++($Request <request (00018)>)
[074-A]: >> “May | take one away from mining?"
[075-H]: "No, use a new one, as soon as possible."
[076-S]: [00019] = (Action
<name use>
<target (Modifier <modifier new> <conte
<priority asap>)
[077-S]: [00020] = (Action
<method (Modifier <modifier new> <conte
<priority asap>)
[078-M]: (Conjunction
<first (@Answer <polarity negative>)>
<second (Disjunction
<first (@Order <orders (00019)>)>
<second (@Order <orders (00020)>)>)
[079-R]: (Conjunction <first 2A> <second ?B>)
=>{ (?A):resolve#->?C,
(?B):resolve#->?D,
("ResolveConjunction <first ?C> <sec
[080-M]: (@Answer <polarity negative>)
[081-R]: { (@Answer <polarity negative>),
??($Request <request ?A>)?? }
=>{ (@Deny <content ?A>),
--($Request <request ?A>)-- }
[082-R]: (@Deny <content (Permission ?A)>)
=> (#PermissionDenied <permission (Permiss
[083-R]: (Disjunction <first 2A> <second ?B>)
=>{ (?A):resolve#->?C,
(?B):resolve#->?D,
("ResolveDisjunction <first ?C> <sec
[084-M]: (@Order <orders (00019)>)
[085-R]: (@Order <orders Action:?A>)
=> (#EvaluateAction <action ?A> <intent ex
[086-M]: (@Order <orders (00020)>)
[087-R]: { (@Order <orders Action:?A>,
[Action:?B],
(/(%Collision <first ?2A> <second ?B>))
=>{ (%Merge <first ?2A> <second ?B>) -> ?
(@Order <orders Action:?C) }
[088-S]: [00021] = (Action
<name move>
<performer engineer>
<location ‘the northeast’>
<intent (00017)>
<method (Modifier <modifier new> <conte
<priority asap>)
[089-S]: (@Order <orders (00021)>)
[090-R]: (@Order <orders Action:?A>)
=> (#EvaluateAction <action ?A> <intent ex
[091-M]: ("ResolveDisjunction
<first (#EvaluateAction <action (00019)
<second (#EvalauteAction <action (00021

d a training camp.”

ction <action ?A> <intent execute>)
te>) => ($Request <request ?B>)

engineer01> <target crystal>)>

nt one>)>

nt one>)>

>)

ond ?D>) }

ion ?A)>)

ond <?D>) }

ecute>)

o

nt one>)>

ecute>)

> <intent execute>)>
)> <intent execute)>)

www.manaraa.com

Table C2 Continued

[092-R]: (*ResolveDisjunction
<first (#EvaluateAction <action ?A> <in
<second (#EvaluateAction <action ?B> <i
=>{ (#EvaluateAction <action ?A> <intent
(#EvaluateAction <action ?B> <intent
(if
<eval (> <first ?C> <second ?D>)>
<then (#EvaluateAction <action ?A
<else (#EvaluateAction <action ?B
[093-M]: (*ResolveConjunction
<first (#PermissionDenied <permission (
<second (#EvaluateAction <action (00021
[094-R]: { (“ResolveConjunction
<first (#PermissionDenied <permissio
<second (#EvaluateAction <action ?B>
(%Getlntent <content ?A>) -> ?C,
(= <first 2C> <second execute>),
(%GetGenerator <content ?A>) -> ?D,
(%lsRefinement <original ?D> <refined ?
=>{ (#PermissionDenied <permission ?A> <
(#EvaluateAction <action ?D> <intent
[095-#]: (#PermissionDenied <permission ?A> <intent
[096-#]: (#EvaluateAction <action ?A> <intent execu
[097-S]: [00022] = (Action
<name train>
<target engineer>
<intent (Action
<name build>
<target ‘training camp’>
<location ‘the northeast’>)>
<priority asap>)>
[098-M]: ($Confirm
<confirmation (ActionPrecedence
<first (Action (00022))>
<last (Action
<name train>
<target engineer>
<intent any>)>)>)
[099-A]: >> “Ok, | will use the next one trained."
[100-H]: "Also send one to the south to build a tra
[101-S]: [00023] = (Action
<name build>
<target ‘training camp’>)
[102-S]: [00024] = (Action
<name move>
<content engineer>
<location ‘the south’>
<intent (Action <name build> <target ‘t
[103-M]: (@Order <orders (Modifier <modifier also>
[104-R]: (@Order <orders (Modifier <modifier also>
=> (@Order <orders (Action:?A)>)
[105-R]: (@Order <orders Action:?A>) => (#EvaluateA
[106-#]: (#EvaluateAction <action ?A> <intent execu
=>{ ($Request <request ?B>)
[107-S]: [00025] = (Refinement
<original (Action 00023)>
<refinment (Action
<method (Modifier <modifier new> <co
<priority asap>)>)
[108-M]: ++($Request <request (Confirm <confirmatio
[109-A]: >> “A new one, as soon as possible?"
[110-H]: "Yes"
[111-M]: (@Answer <polarity affirmative>)
[112-R]: { (@Answer <polarity affirmative>),
??($Request <request ?A>)?? }
=>{ (@Accept <acceptance ?A>),
--($Request <request ?A>)-- }

tent execute>)>

ntent execute>)>)
rate-numeric>) -> ?C,
rate-numeric>) -> ?D,

> <intent execute>)>
> <intent execute>)>) }

00018)>)>
)> <intent execute>)>)

n ?A>)>
<intent execute>)>),

B>)}

intent record>),

execute>) }

record>) => {}

te>)=> ($Confirm <confirmation ?B>)

ining camp."

raining camp’>)>)
<content (00024)>)>)
<content (Action:?A)>)>)

ction <action ?A> <intent execute>)
te>)

ntent one>)>

n (00025)>)>)++

www.manaraa.com

Table C2 Continued

[113-R]: (@Accept <acceptance (Confirm <confirmatio
=> (@Confirm <confirmation ?A>)
[114-R]: { (@Confirm <confirmation (Refinement <or
(%Getintent <content ?A>) -> ?C }
=>{ (%Merge <first ?A> <second ?B>) -> ?
(#EvaluateAction <action ?D> <intent
[115-S]: [00026] = (Action
<name move>
<content engineer>
<location ‘the south™>
<intent (00023)>
<method (Modifier <modifier new> <conte
<priority asap>)
[116-#]: (#EvaluateAction <action ?A> <intent execu
[117-S]: [00027] = (Action
<name train>
<target engineer>
<intent (Action
<name build>
<target ‘training camp’>
<location ‘the south’>)>
<priority asap>)
[118-M]: ($Confirm
<confirmation (ActionPrecedence
<first (Action (00027)>
<last (Action
<name train>
<target engineer>
<intent any>)>)>)
[119-A]: >> “Ok"
[120-H]: "Let me know when the camps are completed.
[121-S]: [00028] = (Event <event camp> <type comple
[122-M]: (@Request <request ($Notify <notification
[123-R]: (@Request <request ($Notify <notification
=> (#RegisterNotification <notification ?A
[124-#]: (#RegisterNotification <notification ?A>)
=> ($Confirm <confirmation ?B>)
[125-S]: [00029] = (Event <event (00022)> <type com
[126-S]: [00030] = (Event <event (00027)> <type com
[127-M]: ($Confirm
<confirmation (Conjunction
<first (@Request <request ($Notify <
<second (@Request <request ($Notify
[128-A]: >> “Ok"
[129-H]: "How much time is left in the game?"
[130-S]: [00031] = (Timespan <begin now> <end (Even
[131-S]: [00032] = (QueryParameter <content (00031)
[132-M]: (@Query <query (00032)>)
[133-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[134-#]: (#EvaluateQuery <query ?A>) => ($Answer <p
[135-M]: ($Answer <polarity ambiguous> <confidence
[136-A]: >> “I'm not sure."
[137-H]: "More than 5 minutes?"
[138-S]: [00033] = (MagnitudeRelation
<relationship greater-than>
<magnitude (Quantity <value 5> <content
[139-M]: (@Query <query (00033)>)
[140-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[141-#]: (#EvaluateQuery <query ?A>) => ($Query <qu
[142-S]: [00034] = (MissingParameter <content (0003
[143-M]: ++($Query <query (00034)>)++
[144-R]: { ($Query <query (QueryParameter <content
(Y%oParameterMatchIinFocus <content ?A> <p
=>{ (%AddParameter <original ?A> <parame
(%Getlntent <content ?D>) -> ?E,
("HandleResponse <content ?D> <inten
--($Query <query (QueryParameter <co

n ?A>)>)
iginal ?A> <refinement ?B>)>),

D,
?2C>) }

nt one>)>

te>) => ($Confirm <confirmation ?B>)

tion>)
(00028)>)>)
2A>)>)

>)

pletion>))
pletion>)

notification (00029)>)>)>
<notification (00030)>)>)>)>)

t <event game> <type completion>)>)
> <parameter Timespan:value>)

ery ?A>)
olarity ?B> <confidence ?C>)
20%>)

minutes>)>)>)

ery ?A>)
ery ?B>)
3)> <parameter Relation:reference>)

?A> <parameter ?B>)>),
arameter ?B>) -> ?C }
ter ?B> <value ?C>) ->?D),

t ?E>),
ntent ?A> <parameter ?B>)>)-- }

www.manaraa.com

20¢

Table C2 Continued

20¢

[145-R]: ("HandleResponse <content ?A> <intent quer
[146-S]: [00035] = (MagnitudeRelation
<relationship greater-than>
<magnitude (Quantity <value 5> <content
<reference (00031)>
[147-M]: (@Query <query (00035>)
[148-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[149-#]: (#EvaluateQuery <query ?A>)
=> ($Answer)
[150-S]: [00036] = ($Answer <polarity affirmative>
[151-M]: (00036)
[152-A): >> “Yes"
[153-H]: "Why?"
[154-S]: [00037] = (Explanation)
[155-M]: (@Query <query (00034)>)
[156-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[157-#]: (#EvaluateQuery <query ?A>) => ($Query <qu
[158-S]: [00038] = (MissingParameter
<content (00037)>
<parameter Explanation:content>)
[159-M]: ++($Query <query (00038)>)++
[160-R]: { ($Query <query (QueryParameter <content
(%ParameterMatchinFocus <content ?A> <p
=>{ (%AddParameter <original ?A> <parame
(%Getintent <content ?D>) -> ?E,
(*HandleResponse <content ?D> <inten
--($Query <query (QueryParameter <co
[161-R]: ("HandleResponse <content ?A> <intent quer
=> (@Query <query ?A>)
[162-S]: [00039] = (Explanation
<content ($Answer
<polarity affirmative>
<confidence 100%>)>
<content (00035)>)>)
[163-M]: (@Query <query (00039)>)
[164-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[165-#]: (#EvaluateQuery <query ?A>) =>
($Answer <content ?B>)
[166-S]: [00040] = (Quantity <value 1> <content opp
[167-S]: [00041] = (CompareRelation
<relationship equal>
<referencel (Modifier <modifier our> <c
<reference2 (Modifier <modifier their>
[168-S]: [00042] = (StateInTime <time begin> <conte
[169-S]: [00043] = (MagnitudeRelation
<relation equals>
<magnitude 0>
<reference (Modifier <modifier their> <con
[170-S]: [00044] = (Inference
<if (00043)>
<then (Event <event game> <type complet
[171-S]: [00045] = (Plan <objective (00043)>)
[172-S]: [00046] = (Timespan <value (00045):duratio
[173-S]: [00047] = (MagnitudeRelation
<relation at-least>
<magnitude (Quantity <value 10> <conten
<reference (00046)>)
[174-S]: [00048] = (MagnitudeRelation
<relation at-least>
<magnitude (Quantity <value 10> <conten
<reference (00031)>)
[175-S]: [00049] = (Argument
<givenfact (00040)>
<givenfact (00042)>
<givenrule (00044)>
<assumerule (00047)>
<conclusion (00048)>)

y>) => (@Query <query ?A>)

minutes>)>

ery ?A>)

<confidence 100%>)

ery ?A>)
ery ?B>)

?A> <parameter ?B>)>),
arameter ?B>) -> ?C }
ter ?B> <value ?C>) -> ?D),

t ?E>),
ntent ?A> <parameter ?B>)>)-- }
y>)

ery ?A>)

onent>)

ontent I’ESOUI’CES>)>
<content resources>)>)
nt (00041)>)

tent resources>)>)

ion>)>)

n:minimums)

t minutes>)>

t minutes>)>

www.manaraa.com

Table C2 Continued

21C

[176-S]: [00050] = (Explanation
<content ($Answer
<polarity affirmative>
<confidence 100%>
<content (00035)>)>
<explanation (00049)>)
[177-M]: ($Answer <content (00050)>)
[178-A]: >> “Given that there is only one opponent,
resources."
[179-A]: >> “It would take at least 10 minutes to b
what resources we know they have."
[180-H]: "So, 10 minutes?"
[181-S]: [00051] = (ConclusionOf <conclusion (Quant
[182-M]: (@Query <query (00051)>)
[183-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[184-#]: (#EvaluateQuery <query ?A>) => ($Query <qu
[185-S]: [00052] = (MissingParameter <content (0005
[186-M]: ++($Query <query (00052)>)++
[187-R]: { ($Query <query (QueryParameter <content
(Y%ParameterMatchinFocus <content ?A> <p
=>{ (YAddParameter <original ?A> <parame
(%Getintent <content ?D>) -> ?E,
("HandleResponse <content ?D> <inten
--($Query <query (QueryParameter <co
[188-R]: (*HandleResponse <content ?A> <intent quer
=> (@Query <query ?A>)
[189-S]: [00053] = (ConclusionOf
<argument (00049)>
<conclusion (Quantity <value 10> <conte
[190-M]: (@Query <query (00053)>)
[191-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[192-#]: (#EvaluateQuery <query ?A>) => ($Reject <r
[193-S]: [00054] = (MagnitudeRelation
<relation equals>
<magnitude (Quantity <value 10> <conten
<reference (00046)>)
[194-S]: [00055] = (ConclusionOf <argument (00049)>
[195-S]: [00056] = (MagnitudeRelation
<relation equals>
<magnitude 0>
<reference (Modifier <modifier our> <conte
[196-S]: [00057] = (Desire <objective (00056)> <who
[197-S]: [00058] = (Plan
<objective (00056)>
<who opponent>
<method (Disjunction
<first (Action <name train>)>
<second (Action <name build>)>)>
<confidence 95%>
[198-S]: [00059] = (Inference
<if (Action <name train>)>
<then (ChangeQuantity
<type increase>
<content (Modifier <modifier Action:
[199-S]: [00060] = (Inference
<if (Action <name build>)>
<then (ChangeQuantity
<type increase>
<content (Modifier <modifier Action:
[200-S]: [00061] = (ChangeQuantity
<type increase>
<content (Modifier <modifier their> <co
<confidence 95%>)
[201-S]: [00062] = (MagnitudeRelation
<relation greater-than>
<magnitude (Quantity <value 10> <conten
<reference (00046)>)

and they start with the same

uild an army, find them and destroy

ity <value 10> <content minutes>) >)
ery ?A>)

ery ?B>)

1)> <parameter Conclusion:argument>)
?A> <parameter ?B>)>),

arameter ?B>) -> ?C }

ter ?B> <value ?C>) ->?D),

t ?E>),

ntent ?A> <parameter ?B>)>)-- }

y>)

nt minutes>)>)

ery ?A>)

ejection ?B> <justification ?C>)
t minutes>)>

<conclusion (00054)>)

nt resources>)>)
opponent>)

team> <content I’ESOUI’CES>)>)>)

team> <content resources>)>)>)

ntent resources>)>

t minutes>)>

www.manaraa.com

Table C2 Continued

211

[202-S]: [00063] = (MagnitudeRelation
<relation greater-than>
<magnitude (Quantity <value 10> <conten
<reference (00031)>)

[203-S]: [00064] = (Argument
<assumefact (00057)>
<assumefact (00058)>
<givenrule (00059)>
<givenrule (00060)>
<assumefact (00061)>
<assumefact (00062)>
<conclusion (00063)>)

[204-M]: ($Reject <rejection (00055)> <justificatio

[205-A]: >> “No. They are most likely building the

[206-M]: ($Notify <notification (Event <event (0002

[207-A]: >> “The training camp has been finished.”

[208-H]: "Show me."

[209-S]: [00065] = (Action <name present>)

[210-M]: (@Order <orders (00065)>)

[211-R]: (@Order <orders Action:?A>)

=> (#EvaluateAction <action ?A> <intent ex

[212-#]: (#EvaluateAction <action ?A> <intent execu

=> ($Query <query ?B>)

[213-S]: [00066] = (MissingParameter
<content (00065)>
<parameter Action:target>)

[214-M]: ++($Query <query (00066)>)++

[215-R]: { ($Query <query (QueryParameter <content
(Y%oParameterMatchIinFocus <content ?A> <p

=>{ (%AddParameter <original ?A> <parame
(%Getlntent <content ?D>) -> ?E,
("HandleResponse <content ?D> <inten
--($Query <query (QueryParameter <co
[216-S]: [00067] = (Action <name present> <target (
[217-R]: ("HandleResponse <content (Action:?A)> <in
=> (#EvaluateAction <action ?A> <intent ?B

[218-#]: (#EvaluateAction <action ?A> <intent execu

[219-D]: “Training camp ‘campl’ is shown on the sc

[220-M]: ($Notify <notification (Event <event (0003

[221-A]: >> “The second training camp has been fini

[222-H]: "Create a squad.”

[223-S]: [00068] = (Action <name create> <target ‘a

[224-M]: (@Order <orders (00068)>)

[225-R]: (@Order <orders Action:?A>)

=> (#EvaluateAction <action ?A> <intent ex

[226-#]: (#EvaluateAction <action ?A> <intent execu

=> ($Query <query ?B>)

[227-S]: [00069] = (Procedure <objective (00068)>)

[228-S]: [00070] = (QueryParameter <content (00069)

[229-M]: ++($Query <query (00070)>)++

[230-A]: >> “How do | create a squad?"

[231-H]: "First, train six soldiers."

[232-S]: [00071] = (Action <name train> <target (Qu

[233-S]: [00072] = (Modifier <modifier first> <cont

[234-M]: (@Order <orders (00072)>)

[235-R]: { ??($Query <query (QueryParameter:?A)>)?
(@Order <orders ?B>),
(#QueryResponseMatch <query ?A> respons

=>{ ("RewriteQuery <query ?A> <response
(%Getlntent <content ?C>) -> ?D,
(*HandleResponse <content ?C> <intent ?
--($Query <query ?B>)--}

[236-R]: (*"RewriteQuery
<query (QueryParameter <content ?A> <pa
<response ?C>)

-> (%AddParameter <original ?A> <parameter

[237-S]: [00073] = (Procedure <objective (00068)> <

t minutes>)>

n (00064)>
ir resources, it will take longer."
9)> <type completion>)>)

ecute>)
te>)

?A> <parameter ?B>)>),
arameter ?B>) -> ?C }
ter ?B> <value ?C>) ->?D),

t ?E>),

ntent ?A> <parameter ?B>)>)-- }
00029)>)

tent ?B>)

>)

te>)

reen and highlighted.”

0)> <type completion>)>)
shed.”

squad’>)

ecute>)
te>)

> <parameter Procedure:procedure>)

antity <value 6> <content soldier>)>)

ent (00071)>)
?

e <?B>)}
?B>) -> ?C,

D>),

rameter ?B>)>

?B> <value ?C>)
procedure (00072)>)

www.manaraa.com

Table C2 Continued

21z

[238-R]: ("HandleResponse <content (Procedure:?A)>
=> (#EvaluateAction <action ?A> <intent ?B
[239-#]: (#EvaluateAction <action ?A> <intent execu
=>{ ($Confirm <confirmation ?A>),
++("LookForward <content (00072)> <k
[240-#]: ($Confirm <confirmation (00073)>)
[241-A]: >> “Ok"
[242-H]: "Then, group them together."
[243-S]: [00074] = (Action <name group> <content th
[244-S]: [00075] = (Modifier <modifier then> <conte
[245-M]: (@Order <orders (00074)>)
[246-R]: { (@Order <orders (Modifier <modifier the
??("LookForward <content ?A> <key first
=>{ ("MergeConcepts
<first ?2A>
<second (Modifier <modifier then>
(*HandleChange <original ?A> <new ?C
--("LookForward <content ?A> <key fi
[247-R]: ("MergeConcepts
<first (Modifier <modifier first> <cont
<second (Modifier <modifier then> <cont
-> (ActionSequence <first ?A> <second ?B>)
[248-S]: [00076] = (ActionSequence
<first (00071)>
<second (Action <name group> <target fi
[249-R]: ("HandleChange <original ?A> <new ?B>)
=>{ (%GetRootConcept <concept ?A>) -> ?C
(%Getlntent <content ?C>) -> ?D,
(%FindParameter <root ?C> <search ?A
(%ReplaceParameter <original ?C> <pa
(#EvaluateChangedConcept <original ?
[250-S]: [00077] = (Procedure <objective (00068)> <
[251-#]: (#EvaluateChangedConcept <original ?A> <ne
=> ($Confirm <confirmation ?C>)
[252-S]: [00078] = (Change <original (00073)> <new
[253-M]: ($Confirm <confirmation (00078)>)
[254-A]: >> “Ok"
[255-H]: "The group is called a squad."
[256-S]: [00079] = (Nomenclature <usage squad> <mea
[257-M]: (@Tell <content (00079)>)
[258-R]: (@Tell <content (Nomenclature:?A>)
=> (#EvaluateKnowledge <knowledge ?A> <int
[259-#]: (#EvaluateKnowledge <knowledge ?A> <intent
=> ($Confirm <confirmation ?B>)
[260-S]: [00080] = (Knowledge <knowledge (00079)>)
[261-M]: ($Confirm <confirmation (00080)>)
[262-A]: >> “| understand"
[263-H]: "Have the other camp create a squad as wel
[264-S]: [00081] = (Action
<name create>
<performer (Modifier <modifier other> <
<target squad>)
[265-M]: (@Order <orders (00081)>)
[266-R]: (@Order <orders Action:?A>)
=> (#EvaluateAction <action ?A> <intent ex
[267-#]: (#EvaluateAction <action ?A> <intent execu
=> ($Confirm <confirmation ?A>)
[268-M]: ($Confirm <confirmation (00081)>)
[269-A]: >> “Ok"
[270-H]: "Make two more squads, one at each camp."”
[271-S]: [00082] = (Reference
<reference one>
<content (Modifier <modifier each> <con
[272-S]: [00083] = (Action
<name create>
<target (Quantity <value 2> <content sq
<method (00082)>)

<intent ?B>)
>)
te>)

ey first>)++}

em>)
nt (00074)>)

n> <content ?B>) >),

>)??}

<content ?B>)>) -> ?C,
>),
rst>)-- }

ent (Action:?A)>
ent (Action:?B)>)

rstrresult>)>)

>)->?E

rameter ?E> <value ?B>) -> ?F
C> <new ?F> <intent ?D>) }
procedure (00076)>)

w ?B> <intent execute>)

(00077)>)

ning ‘the group’>)

ent learn>)
learn>)

content camp>)>

ecute>)

te>)

tent camp>)>)

uad>)>

www.manaraa.com

Table C2 Continued

21

1)

[273-M]: (@Order <orders (00083)>)
[274-R]: (@Order <orders Action:?A>)
=> (#EvaluateAction <action ?A> <intent ex
[275-#]: (#EvaluateAction <action ?A> <intent execu
=> ($Confirm <confirmation ?A>)
[276-S]: [00084] = (Action <name crete> <performer
[277-S]: [00085] = (Action <name crete> <performer
[278-S]: [00086] = (Conjunction <first (00084)> <se
[279-M]: ($Confirm <confirmation (00086)>)
[280-A]: >> “Ok"
[281-H]: "Let's make missiles."
[282-S]: [00087] = (Action <name create> <target mi
[283-M]: (@Propose <proposal (00087)>)
[284-R]: (@Propose <proposal Action:?A>)
=> (#EvaluateProposal <proposal ?A> <inten
[285-#]: (#EvaluateProposal <proposal ?A> <intent e
=> ($CounterPropose <ariginal ?A> <proposa
[286-S]: [00088] = (Action <name train> <target ‘up
[287-S]: [00089] = (Action <name build> <target hos
[288-S]: [00090] = (ActionSequence <first (00088)>
[289-M]: ++($CounterPropose <original (00087)> <pro
[290-A]: >> “No, | think we should train upgraded s
[291-H]: "Why?"
[292-S]: [00091] = (Explanation)
[293-M]: (@Query <query (00091)>)
[294-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[295-#]: (#EvaluateQuery <query ?A>) => ($Query <qu
[296-S]: [00092] = (MissingParameter
<content (00091)>
<parameter Explanation:content>)
[297-M]: ++($Query <query (00092)>)++
[298-R]: { ($Query <query (QueryParameter <content
(Y%ParameterMatchinFocus <content ?A> <p
=>{ (%AddParameter <original ?A> <parame
(%Getlntent <content ?D>) -> ?E,
("HandleResponse <content ?D> <inten
--($Query <query (QueryParameter <co
[299-R]: ("HandleResponse <content ?A> <intent quer
[300-S]: [00093] = (Explanation
<content ($CounterPropose <original (00
[301-M]: (@Query <query (00093)>)
[302-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[303-#]: (#EvaluateQuery <query ?A>) =>
($Answer <content ?B>)
[304-S]: [00094] = (Plan <objective (00087)>)
[305-S]: [00095] = (Plan <objective (00090)>)
[306-S]: [00096] = (Timespan <value (00094):duratio
[307-S]: [00097] = (Timespan <value (00095):duratio
[308-S]: [00098] = (CompareRelation
<relation greater-than>
<referencel (00096)>
<reference2 (00097)>)
[309-S]: [00099] = (Quantity <value (00094):variati
[310-S]: [00100] = (Quantity <value (00095):variati
[311-S]: [00101] = (CompareRelation
<relation greater-than>
<referencel (00099)>
<reference2 (00100)>)
[312-S]: [00102] = (Conjunction <first (00098)> <se
[313-S]: [00103] = (Argument
<givenfact (00096)>
<givenfact (00097)>
<assumefact (00098)>
<givenfact (00099)>
<givenfact (00100)>
<assumefact (00101)>
<conclude (00102)>)

ecute>)
te>)

campl> <target squad>)
camp2> <target squad>)
cond (00085)>)

ssle>)

t evaluate>)

valuate>)

1 ?B>)

graded soldiers™)

pital>)

<second (00089)>)

posal (00090)>)++

oldiers, then build a hospital.”

ery ?A>)
ery ?B>)

?A> <parameter ?B>)>),
arameter ?B>) -> ?C }

ter ?B> <value ?C>) -> ?D),

t ?E>),

ntent ?A> <parameter ?B>)>)-- }
y>) => (@Query <query ?A>)
087)> <proposal (00090)>)>)

ery ?A>)

n:minimum>)
n:minimum>)

on>)
on>)

cond (00101)>)

www.manaraa.com

Table C2 Continued

214

[314-S]: [00104] = (Explanation
<content ($CounterPropose <original (00
<explanation (00103)>)
[315-M]: ($Answer <content (00104)>)
[316-A]: >> “Because it is faster and easier than m
[317-H]: "But, | really want missiles."
[318-S]: [00105] = (Desire <objective missle> <magn
[319-S]: [00106] = (Modifier <modifier but> <conten
[320-M]: (@Tell <content (00106)>)
[321-R]: { (@Tell <content (Modifier <modifier but
[$:7B] }
=> (@Reject <rejection ?B> <justification
[322-R]: (@Reject <rejection ($Answer <content ?A>)
=> (@Reject <rejection ?A> <justification
[323-S]: [00107] = (@Reject <rejection (00104)> <ju
[324-R]: (@Reject
<rejection (Explanation <content ($Prop
<justification ?B> <intent evaluate>)
=> (#EvaluateRejection <rejection ?B> <jus
[325-#]: (#EvaluateRejection <proposal ?A> <justifi
=>{ ($CounterPropose <original ?A> <prop
--($CounterPropose <original ?D> <pr
[326-S]: [00108] = (ActionSequence <first (00088)>
[327-M]: ++($CounterPropose <original (00090)> <pr
[328-A]: >> “How about we train upgraded soldiers t
[329-H]: "Alright, what do we need to do for upgrad
[330-S]: [00109] = (Procedure <objective ‘upgraded
[331-M]: (Conjunction <first (@Accept)> <second (@Q
[332-R]: (Conjunction <first 2A> <second ?B>)
=>{ (?A):resolve#->?C,
(?B):resolve#->?D,
("ResolveConjunction <first ?C> <sec
[333-M]: (@Accept)
[334-R]: { (@Accept I<acceptance ?A>),
??($Propose <proposal ?B>)?? }
=>{ (@Accept <acceptance ($Propose <prop
--($Propose <proposal ?B>)-- }
[335-M]: (@Accept <acceptance ($Propose <proposal (
[336-R]: (@Accept <acceptance ($Propose <proposal (
=>{ (%GetIntent <content ?A>) -> ?B,
(#EvaluateAction <action ?A> <intent
[337-M]: (@Query <query (00109)>)
[338-R]: (@Query <query (Procedure <objective ?A>)>
=> (#EvaluateQuery <query (Procedure <obje
[339-M]: (“ResolveConjunction
<first (#EvaluateAction <action (00108)
<second (#EvaluateQuery <query (00109)>
[340-R]: { (“ResolveConjunction
<first (#EvaluateAction <action ?A>
<second (#EvaluateQuery <query (Proc
(%ContainsConcept <content ?A> <contain
=>{ (Plan <objective ?A>) -> ?C,
(%FindParameter <root ?C> <search ?B
(#EvaluateAction <action ?C> <intent
(#EvaluateAction <action ?C> <intent
[341-S]: [00110] = (Plan <objective (00108)>)
[342-#]: (#EvaluateAction <action ?A> <intent adopt
[343-#]: (#EvaluateAction <action ?A> <intent plan>
=> ($Plan <content ?C> <focus ?D>)
[344-S]: [00111] = (Action <name build> <target ‘re
[345-S]: [00112] = (Action <name research> <target
[346-S]: [00113] = (ActionSequence <first (00111)>
[347-S]: [00114] = (Action <name research> <target
[348-S]: [00115] = (Action <name build> <target ‘mi
[349-S]: [00116] = (Action <name build> <target ‘mi
[350-S]: [00117] = (ActionSequence <first (00114)>
[351-S]: [00118] = (Plan <objective (00088)> <proce

087)> <proposal (00090)>)>

issiles."

itude ‘really want'>)
t (00105)>)

> <content ?A>)>),

?A>)

> <justification ?B>)
?B>) }

stification (00105)>)

ose ?A)>)>

tification ?B> <intent evaluate>)
cation ?B> <intent evaluate>)
osal ?C>),

oposal ?A>)--}

<second (00087)>)

oposal (00108)>)++

hen build missiles?"

ed soldiers?"

soldiers’>)

uery <query (00109)>)>)

ond ?D>) }

osal ?B>)>),

00108)>)>)
Action:?A)>)>)

?B>)}

ctive ?A>)>)

<intent adopt>)>

)>>)

<intent adopt>)>
edure <objective ?B>)>)>),
s?B>)}

>) -> 7D,
adopt>),
plan> <focus ?D>) }

>) =>{}

<focus ?B>)

search lab’>)
explosives>)
<second (00112)>)
missiles>)

ssle silo’>)

ssle’™)

<second (00115)> <third (00116)>)

dure (00113)>)

www.manaraa.com

Table C2 Continued

21¢

[352-S]: [00119] = (Plan <objective (00087)> <proce
[353-S]: [00120] = (Plan
<objective (00108)>
<procedure (Sequence <first (00118)>
[354-M]: ++($Plan <content (00120)> <focus Plan:pro
[355-A]: >> “First, we should build a research lab.
[356-H]: "How about just north of the vault?"
[357-S]: [00121] = (RelativeLocation
<direction north>
<distance ‘just’>
<reference vault>)
[358-M]: (@Propose <proposal (00121)>)
[359-R]: { (@Propose <proposal ?A>),
??($Plan <content ?B> <focus ?C>)??,
(/(%Collision <first ?2C> <second ?A>))
=>{ (%Getlntent <content ?B>) -> ?D,
(#EvaluateProposal
<proposal (Refinement <original ?
<intent ?D>) }
[360-#]: (#EvalutaeProposal <proposal (?A)> <intent
=>{ ($Answer <content ?B>),
($Plan <content ?C> <focus ?D>),
--($Plan <content ?E> <focus ?F>)--
[361-M]: ($Accept <acceptance (00121)>)
[362-A]: >> “Ok"
[363-S]: [00122] = (Action <name build> <target ‘re
[364-S]: [00123] = (ActionSequence <first (00122)>
[365-S]: [00124] = (Plan <objective (00088)> <proce
[366-S]: [00125] = (Plan
<objective (00108)>
<procedure (Sequence <first (00124)>
[367-M]: ++($Plan <content (00125)> <focus Plan:pro
[368-A]: >> “Then, we'll need to research explosive
[369-H]: "Go attack the enemy."
[370-S]: [00126] = (Action <name attack> <target op
[371-M]: (@Order <orders (00126)>)
[372-R]: (@Order <orders Action:?A>)
=> (#EvaluateAction <action ?A> <intent ex
[373-#]: (#EvaluateAction <action ?A> <intent execu
=>{ ($Query <query ?B>)
[374-S]: [00127] = (Action
<name attack>
<performer (Quantity <content soldier>)
<target opponent>)
[375-S]: [00128] = (QueryParameter
<content (00127)>
<parameter Action:performer:Quantity:va
[376-M]: ++($Query <query (00128)>)++
[377-A]: >> “How many soldiers should go?"
[378-H]: "Everyone."
[379-S]: [00129] = (Quantity <value all> <content p
[380-M]: (@Tell <content (00129)>)
[381-R]: { (@Tell <content ?A>),
??($Query <query ?B>)??,
(#QueryResponseMatch <query ?B> <respon
=>{ ("RewriteQuery <query ?B> <response
(%Getlntent <content ?C>) -> ?D,
(*HandleResponse <content ?C> <inten
--($Query <query ?B>)-- }
[382-R]: ("RewriteQuery
<query (MissingParameter <content ?A> <
<response ?C>)
-> (Y%AddParameter <original ?A> <parameter
[383-R]: ("HandleResponse <Action:?A> <intent ?B>)
=> (#EvaluateAction <action ?A> <intent ?B
[384-#]: (#EvaluateAction <action ?A> <intent execu
($Confirm <confirmation ?A>)

dure (00117)>)

<second (00119)>)>)
cedure:first:procedure:first>)++

C> <refinement ?A>)>

plan>)

search lab’> <location (00121)>)
<second (00112)>)

dure (00123)>)

<second (00119)>)>)
cedure:first:procedure:second>)++

S.

ponent>)

ecute>)
te>)

lue>)

erson>)

se ?A>) }
?A>) -> ?C,

t ?D>,

parameter ?B>)>
?B> <value ?C>)

>)
te>) =>

www.manaraa.com

Table C2 Continued

21¢

[385-S]: [00130] = (Action
<name attack>
<performer (Quantity <value all> <conte
<target opponent>)
[386-M]: ($Confirm <confirmation (00130)>)
[387-A]: >> “Ok"
[388-H]: "Make two more squads at each camp."
[389-S]: [00131] = (Quantity <value 2> <content squ
[390-S]: [00132] = (Modifier <modifier each> <conte
[391-S]: [00133] = (Action <name create> <target (0
[392-M]: (@Order <orders (00133)>)
[393-R]: (@Order <orders Action:?A>)
=> (#EvaluateAction <action ?A> <intent ex
[394-#]: (#EvaluateAction <action ?A> <intent execu
=> ($Confirm <confirmation ?A>)
[395-S]: [00134] = (Action <name crete> <performer
[396-S]: [00135] = (Action <name crete> <performer
[397-S]: [00136] = (Conjunction <first (00134)> <se
[398-M]: ($Confirm <confirmation (00136)>)
[399-A]: >> “Ok"
[400-H]: "Where were we?"
[401-M]: (@Query <query (Focus)>)
[402-R]: { (@Query <query (Focus)>),
?2?2(?A)?? }
=>{ (%Getintent <content ?A>) -> ?B,
(*HandleFocus <content ?A> <intent ?
(?A) }
[403-R]: ("HandleFocus <content ?A> <intent plan>)
=> (@Tell <content ?A>)
[404-M]: ($Tell <content (00125)>)
[405-A]: >> “We were planning to build a research |
[406-M]: ++($Plan <content (00125)> <focus Plan:pro
[407-A]: >> “We then need to research explosives wi
[408-H]: "Sounds good. How long will it take?"
[409-S]: [00137] = (Timespan <begin now> <end (Even
[410-S]: [00138] = (QueryParameter <content (00137)
[411-M]: (Conjunction <first (@Accept)> <second (@Q
[412-R]: (Conjunction <first 2A> <second ?B>)
=>{ (?A):resolve#->?C,
(?B):resolve#->?D,
("ResolveConjunction <first ?C> <sec
[413-M]: (@Approve)
[414-R]: { (@Approve !<content ?A>),
??($Plan <content ?B> <focus ?C>)??,
(!(%Collision <first ?C> <second ?A>))
=>{ (@Approve <content ?C>),
--($Plan <content ?B> <focus ?C>)--
[415-M]: (@Approve <content (00112)>)
[416-R]: (@Approve <content (Action:?A)>)
=>{ (%Getintent <content ?A>) -> ?B,
(#EvaluateAction <action ?A> <intent
[417-M]: (@Query <query (00138)>)
[418-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[419-M]: ("ResolveConjunction
<first (#EvaluateAction <action (00112)
<second (#EvaluateQuery <query (00138)>
[420-R]: ("ResolveConjunction <first (#:?A)> <secon
[421-#]: (#EvaluateAction <action ?A> <intent adopt
[422-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[423-S]: [00139] = (Quantity <value 1630> <content
[424-S]: [00140] = (Timespan
<begin now>
<end (Event <event (00124)> <type compl
<value (00139)>)
[425-M]: ($Answer <content (00140)>)
[426-A]: >> “1630 cycles."
[427-H]: "Ok, do it."

nt soldier>)

ad>)
nt camp>)
0131)> <location (00132)>)

ecute>)
te>)

campl> <target (00131)>)
camp?2> <target (00131)>)
cond (00135)>)

B>),

ab just north of the vault."
cedure:first:procedure:second>)++
thit."

t <event it> <type completion>)>)
> <parameter Timespan:value>)
uery <query (00138)>)>)

ond ?D>) }

?B>) }
ery ?A>)

<intent adopt>)>

)>)

d (#:?7B)>) =>{ (?A), (?B) }
>) =>{}

ontent ?B>)

cycles>)

etion>)>

www.manaraa.com

Table C2 Continued

[428-M]: (Conjunction <first (@Acknowledge)> <secon
[429-R]: (Conjunction <first 2A> <second ?B>)
=>{ (?A):resolve#->?C,
(?B):resolve#->?D,
("ResolveConjunction <first ?C> <sec
[430-M]: (@Acknowledge)
[431-R]: (@Acknowledge) => {}
[432-M]: (@Execute <content it>)
[433-R]: { (@Execute !<content ?A>),
[(Action|Plan|Procedure:?B)] }
=> (#EvaluateAction <action ?B> <intent ex
[434-M]: ("ResolveConjunction <first ({})> <second
[435-#]: (#EvaluateAction <action ?A> <intent execu
[436-M]: ($Confirm <confirmation (00124)>)
[437-A]: >> “Ok"
[438-H]: "Then what do we have to do to build missi
[439-S]: [00141] = (Action <name build> <target mis
[440-S]: [00142] = (Procedure <objective (00141)>)
[441-S]: [00143] = (Modifier <modifier then> <conte
[442-M]: (@Query <query (00143)>)
[443-R]: (@Query <query (Modifier <modifier then> <
=> (@Query <query ?A>)
[444-M]: (@Query <query (00142)>)
[445-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[446-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[447-M]: ($Answer <content (00117)>)
[448-A]: >> “First, we have to research missiles in
[449-A]: >> “Then, we have to build a missle silo."
[450-A]: >> “Finally, we have to build a missle."
[451-H]: "How long until we can start building a si
[452-S]: [00144] = (Event <event (Action <name buil
[453-S]: [00145] = (Timespan <begin now> <end (0014
[454-S]: [00146] = (QueryParameter <content (00145)
[455-M]: (@Query <query (00146)>)
[456-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[457-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[458-S]: [00147] = (Quantity <value 3500> <name cyc
[459-S]: [00148] = (Timespan <begin now> <end (0014
[460-M]: ($Answer <content (00148)>)
[461-A]: >> “Approximately 3500 cycles."
[462-H]: "Forget it!"
[463-M]: (@Abandon <content it>)
[464-R]: { (@Abandon !<content ?A>),
[(Action|Plan|Procedure:?B)] }
=> (#EvaluateAction <action ?B> <intent ab
[465-S]: [00149] = ($Abandon <content (00117)>)
[466-M]: ($Confirm <confirmation (00149)>)
[467-H]: "How long does it take to build a squad?"
[468-S]: [00150] = (Action <name build> <target squ
[469-S]: [00151] = (Procedure <objective (00150)>)
[470-S]: [00152] = (QueryParameter <content (00151)
[471-M]: (@Query <query (00152)>)
[472-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[473-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[474-S]: [00153] = (Quantity <value 860> <name cycl
[475-S]: [00154] = (Procedure <objective (00150)> <
[476-M]: ($Answer <content (00154)>)
[477-A]: >> “Approximately 860 cycles."
[478-H]: "That's not good enough!”
[479-M]: (@Assert <content dissatisfaction>)
[480-R]: { (@Assert <content dissatisfaction>),
[$:7A] }
=> ("HandleFeedback <content ?A> <feedback
[481-R]: ("HandleFeedback <content ?A> <feedback di
=>{ (%GetFocus ?A) -> ?B,
(Problem <content ?A> <focus ?B> <ty
(#EvaluateProblem <content ?C> <inte

d (@Execute <content it>)>)

ond ?D>) }

ecute>)
?A>) => (?A)
te>) => (Confirm <confirmation ?B>)

les?"

sle>)

nt (00142)>)

content ?A>)

ery ?A>)

ontent ?B>)

the research lab."

lo?"

d> <target silo>)>) <type capable>)
4)> <type completed>)

> <parameter Timespan:value>)
ery ?A>)

ontent ?B>)

les> <accuracy approx>)
4)> <type completed> <value (00147)>)

andon>)

ad>)
> <parameter Procedure:duration>)

ery ?A>)

ontent ?B>)

es> <accuracy approx>)
duration (00153)>)

dissatisfied>)
ssatisfied>)

pe dissatisfied>) -> ?C,
nt fix>) }

www.manaraa.com

Table C2 Continued

21¢

[482-S]: [00155] = (Problem
<content (00154)>
<focus Procedure:duration>
<type dissatisfied>
[483-#]: (#EvaluateProblem <content (Problem ?A)> <
=> ($Propose <proposal ?B>)
[484-S]: [00156] = (Action
<name build>
<target (Modifier <modifier more> <cont
[485-S]: [00157] = (Solution <problem (00155)> <sol
[486-M]: ($Propose <proposal (00157)>)
[487-A]: >> “We could build more training camps."
[488-H]: "Take care of it."
[489-M]: (@ShiftAutonomy <content it> <responsible
[490-R]: { (@ShiftAutonomy <content it> <responsib
[(Action|Plan|Procedure:?B)] }
=> (#EvaluateAutonomicShift <content ?B> <
[491-R]: (#EvaluateAutonomicShift <content ?A> <res
=> ($Confirm <confirmation ?C>)
[492-S]: [00158] = (AutonomicShift <content (00157)
[493-M]: ($Confirm (00158))
[494-A]: >> “OK"
[495-#]: (#EvaluateAction <content ?A> <intent exec
=> ($Warn <content ?A>)
[496-S]: [00159] = (RestrictionQuantity <content re
[497-S]: [00160] = (ConsequenceOf <content (00156)>
[498-M]: ($Warn <content (00160)>)
[499-A]: >> “We are going to run low on resources i
[500-H]: "Then train more engineers."
[501-S]: [00161] = (Action
<name train>
<target (Modifier <modifier more> <cont
[502-S]: [00162] = (Modifier <modifier then> <conte
[503-M]: (@Order <orders (00162)>)
[504-R]: { (@Order <orders (Modifier <modifier the
[$Warn:?B],
(%Getintent <content ?B>) -> ?C }
=> (#EvaluateAction <action ?A> <intent ?C
[505-#]: (#EvaluateAction <action ?A> <intent execu
=> ($Query <query ?B>)
[506-S]: [00163] = (Action <name mine>)
[507-S]: [00164] = (Action
<name train>
<target (Quantity <content engineer>)>
<intent (00163)>)
[508-S]: [00165] = (MissingParameter
<content (00164)>
<parameter Action:target:Quantity:value
[509-S]: [00166] = (MissingParameter <content (0016
[510-S]: [00167] = (Conjunction <first (00165)> <se
[511-M]: ++($Query <query (00167)>)++
[512-A]: >> “How many? What should they mine?"
[513-H]: "You decide."
[514-M]: (@ShiftAutonomy <content answer> <responsi
[515-R]: { (@ShiftAutonomy <content answer <respon
??($Query <query ?B>)?? }
=>{ (#EvaluateAutonomicShift <content ?B
--($Query <query ?B>)-- }
[516-#]: (#EvaluateAutonomicShift <content ?A> <res
=> ($Confirm <confirmation ?C>)
[517-S]: [00168] = (AutonomicShift <content (00167)
[518-M]: ($Confirm <confirmation (00168)>)
[519-A]: >> “Ok"
[520-H]: "Whenever a squad is ready, have it attack
[521-S]: [00169] = (Event <event squad> <type creat
[522-S]: [00170] = (Action <name attack> <target op
[523-S]: [00171] = (ContinualAction <condition (001

intent fix>)

ent ‘training camp’>)>
ution (00156)>)

agent>)
le ?A>),

responsible ?A>)
ponsible ?B>)

> <resonsible agent>)

ute>)

sources> <polarity insufficient>)
<consequence (00159)>)

f we build more troops."

ent engineer>)>)
nt (00161)>)

n> <content ?A>)>),

>)
te>)

>)
3)> <parameter Action:target>)
cond (00166)>)

ble agent>)
sible ?A>),

> <responsible ?A>),
ponsible ?B>)

> <responsible agent>)
the enemy."

ed>)

ponent> <performer it>)
69)> <action (00170)>)

www.manaraa.com

Table C2 Continued

[524-M]: (@Order <orders (00171)>)
[525-R]: (@Order <orders Action:?A>)
=> (#EvaluateAction <action ?A> <intent ex
[526-#]: (#EvaluateAction <action ?A> <intent execu
=> ($Confirm <confirmation ?A>)
[527-M]: ($Confirm <confirmation (00171)>)
[528-A]: >> “Ok"
[529-S]: [00172] = (Event <event (00157)> <type com
[530-M]: ($Notify <notification (00172)>)
[531-A]: >> “We can now make squads twice as fast.”
[532-S]: [00173] = (Event <event (00124)> <type com
[533-M]: ($Notify <notification (00173)>)
[534-A]: >> “We have finished researching explosive
[535-S]: [00174] = (Action
<name train>
<target (Quantity <value 6> <content ‘u
[536-S]: [00175] = (ActionSequence
<first (00174)>
<second (Action <name group> target fir
[537-S]: [00176] = (Procedure <objective (00068)> <
[538-S]: [00177] = (Modification <original (00073)>
[539-M]: ++($Propose <proposal (00177)>)++
[540-A]: >> “Shall we incorporate upgraded soldiers
[541-H]: "Yes"
[542-M]: (@Answer <polarity affirmative>)
[543-R]: { (@Answer <polarity affirmative>),
??($Propose <proposal ?A>)?? }
=>{ (@Accept <acceptance ($Propose <prop
--($Propose <proposal ?A>)—- }
[544-M]: (@Accept <acceptance ($Propose <proposal (
[545-R]: (@Accept <acceptance ($Propose
<proposal (Modification <original ?A> <
=>{ (%Getintent <content ?A>) -> ?C,
(#EvaluateAction <action ?B> <intent
[546-#]: (#EvaluateAction <action ?A> <intent proce
=> ($Confirm <confirmation ?B>)
[547-M]: ($Confirm <confirmation (00177)>)
[548-A]: >> “Ok"
[549-H]: "Make squads as necessary."
[550-S]: [00178] = (Action <name create> <target sq
[551-S]: [00179] = (ContinualAction <condition when
[552-M]: (@Order <orders (00179)>)
[553-R]: (@Order <orders Action:?A>) => (#EvaluateA
[554-#]: (#EvaluateAction <action ?A> <intent execu
[555-M]: ($Confirm <confirmation (00179)>)
[556-A]: >> “Ok"
[557-H]: "How many training camps do we have?"
[558-S]: [00180] = (Modifier <modifier our> <conten
[559-S]: [00181] = (Quantity <content (00180)>)
[560-S]: [00182] = (QueryParameter <content (00181)
[561-M]: (@Query <query (00182)>)

[562-R]: (@Query <query ?A>) => (#EvaluateQuery <qu

[563-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[564-S]: [00183] = (Quantity <value 4> <content (00
[565-M]: ($Answer <content (00183)>)
[566-A]: >> “4"
[567-H]: "But there were two before."
[568-S]: [00184] = (Quantity <value 2>)
[569-S]: [00185] = (StateIlnTime <time before> <cont
[570-S]: [00186] = (Modifier <modifier but> <conten
[571-M]: (@Tell <content (00186)>)
[572-R]: { (@Tell <content (Modifier <modifier but
[$:7B] }
=> (@Reject <rejection ?B> <justification
[573-R]: (@Reject <rejection ($Answer <content ?A>)
=> (@Reject <rejection ?A> <justification
[574-S]: [00187] = (@Reject <rejection (00183)> <ju

ecute>)
te>)

pletion>)

pletion>)

s.”

pgraded soldier'>)>)

stiresult>)>)
procedure (00175)>)
<modified (00176)>)

in new squads?

osal ?A>)>),
00177)>)>)
modified ?B>)>)>)

?2C>)}
dural>)

uad>)
ever-necessary> <action (00178)>)

ction <action ?A> <intent execute>)
te>) => ($Confirm <confirmation ?A>)

t ‘training camp™)
> <parameter Quantity:value>)

ery ?A>)
ontent ?B>)
180)>)

ent (00184)>)
t (00185)>)

> <content ?A>)>),

?A>)

> <justification ?B>)
?B>)}

stification (00185)>)

www.manaraa.com

Table C2 Continued

22C

[575-R]: (@Reject <rejection ?A> <justification ?B>
=> (#EvaluateRejection <rejection ?A> <jus
[576-#]: (#EvaluateRejection <rejection ?A> <justif
=> ($Answer <content ?C>)
[577-S]: [00188] = (StateInTime <time now> <content
[578-S]: [00189] = (Quantity <value 2> <content (00
[579-S]: [00190] = (StateInTime <time before> <cont
[580-S]: [00191] = (StateChange <from (00190)> <to
[581-M]: ($Answer <content (00191)>)
[582-A]: >> “Now there are four."
[583-H]: "What happened?"
[584-S]: [00192] = (Explanation)
[585-M]: (@Query <query (00192)>)
[586-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[587-#]: (#EvaluateQuery <query ?A>) => ($Query <qu
[588-S]: [00193] = (MissingParameter
<content (00192)>
<parameter Explanation:content>)
[589-M]: ++($Query <query (00038)>)++
[590-R]: { ($Query <query (QueryParameter <content
(Y%oParameterMatchinFocus <content ?A> <p
=>{ (%AddParameter <original ?A> <parame
(%Getlntent <content ?D>) -> ?E,
("HandleResponse <content ?D> <inten
--($Query <query (QueryParameter <co
[591-R]: ("HandleResponse <content ?A> <intent quer
=> (@Query <query ?A>)
[592-S]: [00194] = (Explanation
<content ($Answer <content (00191)>)>)
[593-M]: (@Query <query (00194)>)
[594-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[595-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[596-S]: [00195] = (Explanation
<content ($Answer <content (00191)>
<explanation (00157)>)
[597-M]: ($Answer <content (00195)>)
[598-A]: >> “I built two."
[599-H]: "Why?"
[600-S]: [00196] = (Explanation)
[601-M]: (@Query <query (00196)>)
[602-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[603-#]: (#EvaluateQuery <query ?A>) => ($Query <qu
[604-S]: [00197] = (MissingParameter
<content (00196)>
<parameter Explanation:content>)
[605-M]: ++($Query <query (00038)>)++
[606-R]: { ($Query <query (QueryParameter <content
(%ParameterMatchinFocus <content ?A> <p
=>{ (%AddParameter <original ?A> <parame
(%Getintent <content ?D>) -> ?E,
(*HandleResponse <content ?D> <inten
--($Query <query (QueryParameter <co
[607-R]: ("HandleResponse <content ?A> <intent quer
[608-S]: [00198] = (Explanation
<content ($Answer <content (00195)>)>)
[609-M]: (@Query <query (00194)>)
[610-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[611-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[612-S]: [00199] = (Explanation
<content (00195)>
<explanation (00155)>)
[613-M]: ($Answer <content (00199)>)
[614-A]: >> “In order to build squads faster."
[615-H]: "Who told you that you could?"
[616-S]: [00200] = (Permission <responsible agent>)
[617-S]: [00201] = (QueryParameter <content (00200)
[618-M]: (@Query <query (00201)>)

tification ?B>)
ication ?B>)

(00183)>)
180)>)

ent (00189)>)
(00188)>)

ery ?A>)
ery ?B>)

?A> <parameter ?B>)>),
arameter ?B>) -> ?C }
ter ?B> <value ?C>) ->?D),

t ?E>),
ntent ?A> <parameter ?B>)>)-- }
y>)

ery ?A>)
ontent ?B>)

ery ?A>)
ery ?B>)

?A> <parameter ?B>)>),
arameter ?B>) -> ?C }
ter ?B> <value ?C>) -> ?D),

t ?E>),
ntent ?A> <parameter ?B>)>)-- }
y>) => (@Query <query ?A>)

ery ?A>)
ontent ?B>)

> <parameter Permission:authority>)

www.manaraa.com

Table C2 Continued

221

[619-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[620-#]: (#EvaluateQuery <query ?A>) => ($Query <qu
[621-S]: [00202] = (MissingParameter
<content (00201)>
<parameter QueryParameter:content:Permi
[622-M]: ++($Query <query (00202)>)++
[623-R]: { ($Query <query (QueryParameter <content
(Y%ParameterMatchinFocus <content ?A> <p
=>{ (%AddParameter <original ?A> <parame
(%Getlntent <content ?D>) -> ?E,
("HandleResponse <content ?D> <inten
--($Query <query (QueryParameter <co
[624-R]: ("HandleResponse <content ?A> <intent quer
=> (@Query <query ?A>)
[625-S]: [00203] = (Permission
<content (00156)>
<responsible agent>)
[626-S]: [00204] = (QueryParameter <content (00203)
[627-M]: (@Query <query (00204)>)
[628-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[629-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[630-S]: [00205] = (Permission
<content (00156)>
<responsible agent>
<authority human>)
[631-M]: ($Answer <content (00205)>)
[632-A]: >> “You did."
[633-H]: "No, I didn't."
[634-M]: (@Answer <polarity negative>)
[635-R]: { (@Answer <polarity negative>),
[$:7B]}
=> (@Reject <rejection ?B>)
[636-R]: (@Reject <rejection ($Answer <content ?A>)
=> (@Reject <rejection ?A>) }
[637-S]: [00206] = (@Reject <rejection (00205)>)
[638-R]: (@Reject <rejection ?A>)
=> (#EvaluateRejection <rejection ?A>)
[639-#]: (#EvaluateRejection <rejection ?A>)
=> ($Answer <content ?C>)
[640-S]: [00207] = (Interpretation
<content (00158)>
[641-S]: [00208] = (Explanation
<content (00205)>
<explanation (00207)>
[642-M]: ($Answer <content (00208)>)
[643-A]: >> “Oh, | thought that's what 'Take care o
[644-H]: "Yes, you are right."
[645-S]: [00209] = (Affirmation <type agree>)
[646-M]: (@Assert <content (00209)>)
[647-R]: { (@Assert <content (Affirmation <type co
[$Answer:?B] }
=> (@Accept <acceptance ?B>)
[648-R]: (@Accept <acceptance (JAnswer <content ?A>
=> (@Accept <acceptance ?A>) }
[649-S]: [00210] = (@Accept <acceptance (00210)>)
[650-R]: (@Accept <acceptance ?A>) => (#EvaluateAcc
[651-#]: (#EvaluateAcceptance <acceptance ?A>) => {
[652-H]: "How many engineers do we have?"
[653-S]: [00211] = (Modifier <modifier our> <conten
[654-S]: [00212] = (Quantity <content (00211)>)
[655-S]: [00213] = (QueryParameter <content (00212)
[656-M]: (@Query <query (00213)>)
[657-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[658-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[659-S]: [00214] = (Quantity <value 23> <content (0
[660-M]: ($Answer <content (00214)>)
[661-A]: >> “23."

ery ?A>)

ery ?B>)

ssion:content>)

?A> <parameter ?B>)>),
arameter ?B>) -> ?C }

ter ?B> <value ?C>) ->?D),

t ?E>),

ntent ?A> <parameter ?B>)>)-- }

y>)

> <parameter Permission:authority>)

ery ?A>)
ontent ?B>)

>)

fit." meant."

rrectness>)>),

)>)

eptance <acceptance ?A>)

}

t engineer>)

> <parameter Quantity:value>)
ery ?A>)

ontent ?B>)
0211)>)

www.manaraa.com

Table C2 Continued

22z

[662-H]: "What are they doing?"
[663-S]: [00215] = (Action <performer they>)
[664-S]: [00216] = (QueryParameter <content (00215)
[665-M]: (@Query <query (00216)>)
[666-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[667-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[668-S]: [00217] = (Quantity <value 13> <content en
[669-S]: [00218] = (Quantity <value 7> <content eng
[670-S]: [00219] = (Quantity <value 3> <content eng
[671-S]: [00220] = (Action <name mine> <target crys
[672-S]: [00221] = (Action <name mine> <target tita
[673-S]: [00222] = (Action <name stand> <performer
[674-S]: [00223] = (Conjunction <first (00220)> <se
[675-S]: [00224] = (Conjunction <first (00223)> <se
[676-M]: ($Answer <content (00224)>)
[677-A]: >> “13 are mining crystal, 7 are mining ti
[678-H]: "Show me the ones that are standing."
[679-S]: [00225] = (Subset
<superset (Reference <reference ones>)>
<restriction (Action <name standing>)>
[680-S]: [00226] = (Action <name present> <target (
[681-M]: (@Orders <order (00226)>)
[682-R]: (@Order <orders Action:?A>)
=> (#EvaluateAction <action ?A> <intent ex
[683-#]: (#EvaluateAction <action ?A> <intent execu
=> ($Query <query ?B>)
[684-S]: [00227] = (MissingParameter
<content (00225)>
<parameter Subset:superset>
[685-M]: ++($Query <query (00034)>)++
[686-R]: { ($Query <query (QueryParameter <content
(Y%ParameterMatchinFocus <content ?A> <p
=>{ (YAddParameter <original ?A> <parame
(%Getintent <content ?D>) -> ?E,
("HandleResponse <content ?D> <inten
--($Query <query (QueryParameter <co
[687-R]: (*HandleResponse <content ?A> <intent exec
=> (@Order <orders ?A>)
[688-S]: [00228] = (Subset
<superset (00224)>
<restriction (Action <name standing>)>
[689-M]: (@Order <orders (Action <name present> <ta
[690-R]: (@Order <orders Action:?A>)
=> (#EvaluateAction <action ?A> <intent ex
[691-#]: (#EvaluateAction <action ?A> <intent execu
=> ($Confirm <confirmation ?A>)
[692-S]: [00229] = (EnumeratedSet
<first engineerl6>
<second engineer8>
<third engineer9>)
[693-S]: [00230] = (Action <name present> <target (
[694-M]: ($Confirm <confirmation (00230)>)
[695-D]: “Engineer ‘engineerl6’ is shown on the sc
[696-A]: >> “Here is the first."
[697-H]: "What is its history?"
[698-S]: [00231] = (QueryParameter <content it> <pa
[699-M]: (@Query <query (00231)>)
[700-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[701-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[702-S]: [00232] = (Object <name engineerl6> <histo
[703-M]: ($Answer <content (00232)>)
[704-A]: >> “It has built 2 generators."
[705-H]: "Mine titanium"
[706-S]: [00233] = (Action <name mine> <target tita
[707-M]: (@Orders <order (00233)>)
[708-R]: (@Order <orders Action:?A>)
=> (#EvaluateAction <action ?A> <intent ex

> <parameter Action:name>)

ery ?A>)

ontent ?B>)

gineer>)

ineer>)

ineer>)

tal> <performer (00217)>)
nium> <performer (00218)>)
(00219)>)

cond (00221)>)

cond (00222)>)

tanium and 3 are standing.”

)
00225)>)

ecute>) }
te>)

?A> <parameter ?B>)>),
arameter ?B>) -> ?C }
ter ?B> <value ?C>) ->?D),

t 72E>),

ntent ?A> <parameter ?B>)>)-- }
ute>)

)
rget (00228)>)>)

ecute>)
te>)

00229)> <focus EnumeratedSet:first>)

reen and highlighted.”
rameter it:history>)
ery ?A>)

ontent ?B>)
ry (00015)>

nium>)

ecute>)

www.manaraa.com

Table C2 Continued

[709-#]: (#EvaluateAction <action ?A> <intent execu
=> ($Query <query ?B>)
[710-S]: [00234] = (MissingParameter
<content (00233)>
<parameter Action:performer>)
[711-M]: ++($Query <query (00066)>)++
[712-R]: { ($Query <query (QueryParameter <content
(Y%ParameterMatchinFocus <content ?A> <p
=>{ (%AddParameter <original ?A> <parame
(%Getlntent <content ?D>) -> ?E,
("HandleResponse <content ?D> <inten
--($Query <query (QueryParameter <co
[713-S]: [00235] = (Action <name mine> <target tita
[714-R]: ("HandleResponse <content (Action:?A)> <in
=> (#EvaluateAction <action ?A> <intent ?B
[715-#]: (#EvaluateAction <action ?A> <intent execu
=>{ ($Reject <rejection ?A> <justificati
($Propose
<proposal (Modification
<original ?A> <modified ?C>)>
[716-S]: [00236] = (RestrictionQuantity
<content energy>
<polarity insufficient>)
[717-M]: ($Reject <rejection (00235)> <justificatio
[718-A]: >> “But we are almost out of energy."
[719-S]: [00237] = (ActionSequence
<first (Action
<name build>
<target (Quantity <value 2> <content
<performer engineer16>)>
<second (00235)>)
[720-S]: [00238] = (Modification
<original (00235)>
<modified (00237)>)
[721-M]: ++($Propose <proposal (00238)>)++
[722-A]: >> “We should have the engineer build two
[723-H]: "Ok"
[724-M]: (@Acknowledge)
[725-R]: { (@Acknowledge),
??($Propose <proposal ?A>)?? }
=>{ (@Accept <content ($Propose <proposa
--($Propose <proposal ?A>)-- }
[726-M]: (@Accept <content ($Propose <proposal (000
[727-R]: (@Accept <content ($Propose
<proposal (Modification <original ?A> <
=>{ (%Getintent <content ?A>) -> ?C,
(#EvaluateAction <action ?B> <intent
[728-#]: (#EvaluateAction <action ?A> <intent execu
[729-H]: "Next"
[730-M]: (@Order <orders (Action <name advance>)>)
[731-R]: { (@Order <orders (Action <name advance>)
[(Action:?A <name present>] }
=> ("Advance <content ?A>)
[732-R]: (*Advance <content (Action <name present>
=>{ (%GetNextInSet <set ?A> <focus ?B>)
(@Order <orders (Action <name presen
[733-R]: (@Order <orders Action:?A>)
=> (#EvaluateAction <action ?A> <intent ex
[734-#]: (#EvaluateAction <action ?A> <intent execu
=> ($Confirm <confirmation ?A>)
[735-S]: [00239] = (Action <name present> <target (
[736-M]: ($Confirm <confirmation (00239)>)
[737-D]: “"Engineer ‘engineer8’ is shown on the scr
[738-H]: "This history?"
[739-S]: [00240] = (QueryParameter <content this> <
[740-M]: (@Query <query (00240)>)
[741-R]: (@Query <query ?A>) => (#EvaluateQuery <qu

te>)

?A> <parameter ?B>)>),
arameter ?B>) -> ?C }

ter ?B> <value ?C>) ->?D),

t ?E>),

ntent ?A> <parameter ?B>)>)-- }
nium> <performer engineer16>)
tent ?B>)

>)

te>)

on ?B>),

)}

n (00236)>)

generator>)>

more first."

[2A>)>),
04)>)>)
modified ?B>)>)>)
2C>) }

te>) =>{}

>)

<target ?A> <focus ?B>)
->?C,
t> <target ?A> <focus ?C>)>) }

ecute>)
te>)

00229)> <focus EnumeratedSet:second>)
een and highlighted.”
parameter this:history>)

ery ?A>)

www.manaraa.com

Table C2 Continued

224

[742-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[743-S]: [00241] = (Proximity <reference camp0> <di
[744-S]: [00242] = (Action <name build> <target ‘tr
[745-S]: [00243] = (ActionSequence <first (00022)>
[746-S]: [00244] = (Object <name engineer8> <histor
[747-M]: ($Answer <content (00244)>)
[748-A]: >> “First, this engineer built a training
[749-A]: >> “Then, it built the research lab just n
[750-A]: >> “Finally, it built another training cam
[751-H]: "How many are left?"
[752-S]: [00245] = (Subset <restriction remaining>)
[753-S]: [00246] = (QueryParameter
<content (00245)>
<parameter Subset:cardinality>)
[754-M]: (@Query <query (00246)>)
[755-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[756-#]: (#EvaluateQuery <query ?A>) => ($Query <qu
[757-S]: [00247] = (MissingParameter
<content (00246)>
<parameter content:Subset:superset>)
[758-M]: ++($Query <query (00034)>)++
[759-R]: { ($Query <query (QueryParameter <content
(%ParameterMatchinFocus <content ?A> <p
=>{ (%AddParameter <original ?A> <parame
(%Getintent <content ?D>) -> ?E,
(*HandleResponse <content ?D> <inten
--($Query <query (QueryParameter <co
[760-R]: ("HandleResponse <content ?A> <intent quer
=> (@Query <query ?A>)
[761-S]: [00248] = (Subset
<superset (00229)>
<restriction remaining>)
[762-S]: [00249] = (QueryParameter
<content (00248)>
<parameter Subset:cardinality>)
[763-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[764-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[765-S]: [00250] = (Subset
<superset (00229)>
<restriction remaining>
<cardinality 1>)
[766-M]: ($Answer <content (00250)>)
[767-A]: >> “One more."
[768-H]: "Show me"
[769-S]: [00251] = (Action <name present>)
[770-M]: (@Order <orders (00251)>)
[771-R]: (@Order <orders Action:?A>)
=> (#EvaluateAction <action ?A> <intent ex
[772-#]: (#EvaluateAction <action ?A> <intent execu
=> ($Query <query ?B>)
[773-S]: [00252] = (MissingParameter
<content (00251)>
<parameter Action:target>)
[774-M]: ++($Query <query (00034)>)++
[775-R]: { ($Query <query (QueryParameter <content
(%ParameterMatchinFocus <content ?A> <p
=>{ (%AddParameter <original ?A> <parame
(%Getintent <content ?D>) -> ?E,
(*HandleResponse <content ?D> <inten
--($Query <query (QueryParameter <co
[776-R]: ("HandleResponse <content ?A> <intent exec
=> (@Order <orders ?A>)
[777-S]: [00253] = (Action
<name present>
<target (00229):third>)
[778-R]: (@Order <orders Action:?A>)
=> (#EvaluateAction <action ?A> <intent ex

ontent ?B>)
stance near>)

aining camp’> <location (00241)>)
<second (00122)> <third (00242)>)

y (00243)>)

camp in the northeast.”
orth of the vault"
p near the first."

ery ?A>)
ery ?B>)

?A> <parameter ?B>)>),
arameter ?B>) -> ?C }
ter ?B> <value ?C>) -> ?D),

t ?E>),
ntent ?A> <parameter ?B>)>)-- }
y>)

ery ?A>)
ontent ?B>)

ecute>)
te>)

?A> <parameter ?B>)>),
arameter ?B>) -> ?C }
ter ?B> <value ?C>) -> ?D),

t ?E>),

ntent ?A> <parameter ?B>)>)-- }
ute>)

ecute>)

www.manaraa.com

Table C2 Continued

22¢

[779-#]: (#EvaluateAction <action ?A> <intent execu
=>{ ($Confirm <confirmation ?B>),
($Tell <content ?C>) }
[780-S]: [00254] = (Action <name present> <target (
[781-M]: ($Confirm <confirmation (00254)>)
[782-D]: “Engineer ‘engineer9’ is shown on the scr
[783-S]: [00255] = (Proximity <reference campl> <di
[784-S]: [00256] = (Action <name build> <target ‘tr
[785-S]: [00257] = (ActionSequence <first (00027)>
[786-M]: ($Tell <content (00257)>)
[787-A]: >> “This engineer built a training camp in
[788-A]: >> “Then, this engineer built another trai
[789-H]: "How many engineers are left?"
[790-S]: [00258] = (Subset
<superset (Reference <reference enginee
<restriction remaining>)
[791-S]: [00259] = (QueryParameter
<content (00258)>
<parameter Set:cardinality>)
[792-M]: (@Query <query (00259)>)
[793-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[794-#]: (#EvaluateQuery <query ?A>) => ($Query <qu
[795-S]: [00260] = (MissingParameter
<content (00259)>
<parameter content:Subset:superset>)
[796-M]: ++($Query <query (00034)>)++
[797-R]: { ($Query <query (QueryParameter <content
(Y%ParameterMatchinFocus <content ?A> <p
=>{ (YAddParameter <original ?A> <parame
(%Getintent <content ?D>) -> ?E,
("HandleResponse <content ?D> <inten
--($Query <query (QueryParameter <co
[798-R]: (*HandleResponse <content ?A> <intent quer
[799-S]: [00261] = (Subset <superset (00229)> <rest
[800-S]: [00262] = (QueryParameter
<content (00261)>
<parameter Subset:cardinality>)
[801-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[802-#]: (#EvaluateQuery <query ?A>) => ($Answer <c
[803-S]: [00263] = (Subset
<superset (00229)>
<restriction remaining>
<cardinality 0>)
[804-M]: ($Answer <content (00263)>)
[805-A]: >> “You have seen all of the engineers tha
[806-H]: "No, | mean in the game."
[807-S]: [00264] = (CompareRelation <relationship i
[808-S]: [00265] = (Meaning <meaning (00264)>)
[809-M]: (Conjunction
<first (@Answer <polarity negative>)>
<second (@Assert <content (00265)>)>)
[810-R]: (Conjunction <first 2A> <second ?B>)
=>{ (?A):resolve#->?C,
(?B):resolve#->?D,
("ResolveConjunction <first ?C> <sec
[811-M]: (@Answer <polarity negative>)
[812-R]: { (@Answer <polarity negative>),
[$:7B] }
=> (@Reject <rejection ?B>)
[813-R]: (@Reject <rejection ($Answer <content ?A>)
=> (@Reject <rejection ?A>) }
[814-S]: [00266] = (@Reject <rejection (00263)>)
[815-R]: (@Reject <rejection ?A>) => (#EvaluateReje
[816-M]: (@Assert <content (00265)>)
[817-R]: { (@Assert <content (Meaning <meaning ?A>
[@:7C]}

=> (#ApplyMeaning <content ?C> <meaning ?A

te>)

00229)> <focus EnumeratedSet:third>)

een and highlighted.”
stance near>)

aining camp’> <location (00255)>)

<second (00256)>)
the south."

ning camp near the first."

rs>)>

ery ?A>)
ery ?B>)

?A> <parameter ?B>)>),
arameter ?B>) -> ?C }

ter ?B> <value ?C>) ->?D),

t 2E>),

ntent ?A> <parameter ?B>)>)-- }
y>) => (@Query <query ?A>)
riction remaining>)

ery ?A>)
ontent ?B>)

t are standing."

n> <reference2 game>)

ond ?D>) }

>)

ction <rejection ?A>)
I<content ?B>)>),

>)

www.manaraa.com

Table C2 Continued

22¢

[818-M]: ("ResolveConjunction
<first (#EvaluateRejection <rejection (
<second (#ApplyMeaning
<content (@Query <query (00259)>))>
<meaning (00264)>)>)
[819-R]: { (“ResolveConjunction
<first (#EvaluateRejection <rejectio
<second (#ApplyMeaning <content ?B>
(%GetGenerator <content ?A>) -> ?D,
(= <first ?B> <second ?D>) }
=>{ (%GetIntent <content ?B>) -> ?E,
(%Merge <first ?B> <second ?C>) -> ?
("HandleReinterpretation <content ?F
[820-S]: [00267] = (Subset <superset engineers> <re
[821-S]: [00268] = (Subset <superset (00278)> <rest
[822-S]: [00269] = (QueryParameter <content (00268)
[823-R]: (*HandleReinterpretation <content ?A> <int
=> (@Query <query ?A>)
[824-M]: (@Query <query (00269)>)
[825-R]: (@Query <query ?A>) => (#EvaluateQuery <qu
[826-#]: (#EvaluateQuery <query ?A>)
=> ($Answer <content ?B>)
[827-S]: [00270] = (CompareRelation
<relationship in>
<referencel thing>
<reference2 game>)
[828-S]: [00271] = (Subset
<superset engineers>
<restriction (00264)>
<cardinality 23>)
[829-M]: ($Answer <content (00271)>)
[830-A]: >> “There are 23 engineers alive."

00263)>)>

n ?A>)>
<meaning ?C>)>),

F,

> <intent ?E>) }

striction (00264)>)

riction remaining>)

> <parameter Subset:cardinality>)
ent query>)

ery ?A>)

www.manharaa.com

REFERENCES

[1] James Allen, Donna Byron, Myroslava Dzikovskggorge Ferguson, Lucian
Galescu, and Amanda Stent. “An architecture fgereric dialogue shell.Natural
Language Engineerind(3-4):213-228, December 2000.

[2] James Allen, George Ferguson, and Amanda Stéwmt.architecture for more
realistic conversational systems.” Pnoceedings of the"8international Conference
on Intelligent User InterfaceSante Fe, New Mexico, U.S.A., January 2001, gf. 1

[3] Salah Aly. “Protocol Verification and Analysligsing Colored Petri Nets.”
Technical Report, DePaul University, TRO4-0Q&iy 2003.

[4] AUML: Agent Unified Markup Language Websitettgn//www.auml.org/

[5] J. L. Austin. How to Do Things with WordsHarvard University Press, Cambridge,
Massachusetts, U.S.A.

[6] R. Bindiganavale, W. Schuler, J. Allbeck, N.dBar, A. Joshi, and M. Palmer.
“Dynamically Altering Agent Behaviors Using Natulanguage Instructions.a™
International Conference on Autonomous Ageritg. 293-300, 2000.

[7] Nate Blaylock, John Dowding, and James AlléA.dialogue model for interaction
with planers, schedulers and executives.Pitaceedings of the®BInternational
NASA Workshop on Planning and Scheduling for Sgdoaston, Texas, U.S.A.,
October 27-29, 2002.

[8] D. G. Bobrow, R. M. Kaplan, M. Kay, D. A. NormagH. Thomspon, and T.
Winograd. “Gus, a frame driven dialog systemitificial Intelligence8:155-173.

[9] Gregor v. Bochmann and Alexandre Petrenko.ot®tol Testing: Review of
Methods and Relevance for Software Testing.” Ursite de Montreal.

[10]J. M. Bradshaw et al. KA0S: Toward an indiadtstrength open agent architecture.
In J.M. Bradshaw, edito§oftware AgentsAAAI/MIT Press, 1997.

[11] Robbert L. Brak, Jacques D. Fleuriot and JhAMeGinnis. “Theorem proving for
protocol languages.” IRroceedings of the Second European Workshop on-Mult
Agent SystemsBarcelona, Spain 2004.

[12] L. Braubach, A. Pokahr, D. Moldt, and W. Lasdorf. “Goal Representation for
BDI Agent Systems.” IfProceedings of The Second International Workshop on
Programming Multiagent SystemPROMAS-2004 at ACTIONMASO04.

[13]J. Carletta, A. Isard, S. Isard, J. Kowtkod & Doherty-Sneddon. “HCRC
Dialogue Structure Coding Manual.” Technical Rept€CRC/TR-82.

[14] A. Chella, M. Cossentino, L. Sabatucci andSéidita. “Agile PASSI: An Agile
Process for Designing Agentsliternational Journal of Computer Systems Science
& Engineering. Special issue on ‘Software Enginmegfor Multi-Agent Systems.’
May 2006.

www.manaraa.com

22¢

[15] Herbert H. Clark, and Susan E. Brennen. “@abnog in Communication.” In L. B.
Reskick, J. M. Levine, and S. D. Teasley (EditdP®rspectives on Socially Shared
Cognition (pp. 127-149). Washington, DC, U.S.Américan Psychological
Association, 1991.

[16] Philip R. Cohen and Hector J. Levesque. ‘ftitn is choice with commitment.”
Artificial Intelligence 42(2-3):213-292, 1990.

[17] Philip R. Cohen, and Hector J. Levesque. "@umicative Actions for Artificial
Agents.” In J.M. Bradshaw (Editor), Software Age(ip. 419-436). Cambridge,
Massachusetts U.S.A.: MIT Press.

[18] Philip R. Cohen, and Hector J. Levesque. “Aflét. Teamwork.” InNous Vol. 25,
No. 4. (pp. 487-512) 1991.

[19] Robin Cohen, Michael Y. K. Cheng, and Mich#él Fleming. “Why bother about
bother: Is it worth it to ask the user?” Pnoceedings of the AAAI Fall Symposium
Series on Mixed Initiative Problem Solving Assigafrlington, Virginia, U.S.A.,
November 3-6, 2005.

[20]R. A. Cole, J. Mariani, H. Uszkoreit, A. Zaenand V. Zue. “Survey of the State of
the Art in Human Language Technology.” CenterSpoken Language
Understanding CSLU, Canegie Mellon University, $htirgh, Pennsylvania, U.S.A.,
1995.

[21] M. G. Core, and James F. Allen. “Coding D@ues with the DAMSL Annotation
Scheme.” InWorking Notes of the AAAI Fall Symposium on Comoative Action
in Humans and Machinesl997.

[22] N. Dalback, and A. Jonsson. “A Coding Mantmalthe Linkdping Dialogue
Model.” 1998. Link6ping University.

[23]D. J. Duke, P. J. Barnard, D. A. Duce, |. Harmand J. May. “Human-Computer
Protocols.” InProceedings of the Workshop on Continuity in Hut@amputer
Interaction,Scheveningen, The Netherlands, April 2-3, 2000.

[24] Carlos A. Estombelo Montesco, and Dilvan deébMoreira. “UCL — Universal
Communication Language.Journal of Research on Computer Scien8&N 1665-
9899.

[25] B. Eugenio. “An Action Representation Formsalito Interpret Natural Language
Instructions.”

[26] Jacques Ferber. “Multi-Agent Systems: Anddinction to Distributed Artificial
Intelligence.” Addison-Wesley Professional, 1999.

[27] FIPA: Foundation for Intelligent Physical Agsn http://www.fipa.org/
[28] FIPA ACL: Agent Communication Language. hthpww.fipa.org/specs/fipa00061/

[29] Galaxy Communicator Homepage. http://commatac.sourceforge.net/

www.manaraa.com

22¢

[30] M. Georgeff, B. Pell, M. Pollack, M. Tambe aktd Woolridge. “The Belief-Desire-
Intention Model of Agency.” In Jorg Muller, MuniadP. Singh and Anand S. Rao
(Editors), Proceedings of th& fnternational Workshop on Intelligent Agents {V} :
Agent Theories, Architectures, and Languages ({AJAB). 1555:1-10, Springer-
Verlag Publishers, Heidelberg, Germany, 1999.

[31] Goran Goldkuhl. “Action and Media in Inter@ngzational Interaction.
Coordinating the Role of IT with Business Process€ommunications of the
ACM. Vol. 49, No. 5. May 2006.

[32] Barbara J. Grosz. “The structure of taskmed dialogues.” IProceedings of the
IEEE Symposium on Speech RecognitiBiitsburgh, Pennsylvania, U.S.A., April
1974.

[33] Barbara J. Grosz, and Candace L. Sidner. €§tbn, intentions, and the structure of
discourse.”Computational Linguistics12(3):175-204. July-September 1986. MIT
Press, Cambridge, Massachusetts, U.S.A.

[34] Gerald J. Holzmann. “Protocol Design: RedefinThe State Of The ‘Art’.”IEEE
Software Vol. 9, No. 1. (pp. 17-22). January 1992.

[35]G Juhas R. Lorenz and T. Singilar. “Peteti$emantics.” IiProceedings of the
24" International Conference on Application and Theofyetri Nets Eindhoven,
The Netherlands, June 23-27, 2003.

[36] Yves Kodratoff, Adrian Dimulescu and Ahmed Aani. “Man-Machine
Cooperation in Retrieving Knowledge from Techni€abts.” InProceedings of the
AAAI Fall Symposium Series on Mixed Initiative Reab Solving Assistants
Arlington, Virginia, U.S.A., November 3-6, 2005.

[37]John R. Lee, and Andrew B. Williams. “Behavizevelopment through Natural
Language Discourse.Computer Animation and Virtual WorldSpecial Issue: The
Very Best Papers from CASA 2004, 15(3-4):327-337.

[38] John R. Lee, and Andrew B. Williams. “Towam3 heoretical Framework for the
Integration of Dialogue Models into Human-Agenteraction.” InProceedings of
the AAAI Fall Symposium Series on Mixed Initiafveblem Solving Assistants,
Arlington, Virginia, U.S.A., November 3-6, 2005.

[39] Jurgen Lind. “Specifying Agent Interactiono®ycols with Standard UML.” In
Proceedings of the Second International Workshopgent-Oriented Software
Engineering Montreal Canada, May 29, 2001.

[40] Olivia C. March. Natural Language as an Agent Communication Language
Honours thesis, Department of Computer ScienceSarfifvare Engineering,
University of Melbourne.

[41] Michael F. McTear. “Spoken Dialogue Technglognabling the Conversational
User Interface.” IACM Computing Survey2002.

[42] Steve Miller. A Model Theoretic Approach to the Design and Veation of

Distributed SystemsPh.D. Thesis, University of lowa. lowa Citywa, U.S.A.,
1992

www.manaraa.com

23C

[43] John Mylopoulos, Jaelson Castro and ManuepKdIlropos: Towards Agent-
Oriented Information Systems Engineering-he Second International Bi-
Conference Workshop on Agent-Oriented Informatigste®ns, AOIS2000
Stockholm, Sweden, June 5-6, 2000.

[44] Nursebot Project: Robotic Assistants for theéely. http://www-
2.cs.cmu.edu/~nursebot/

[45] OAA: Open Agent Architecture. http://www.ai.som/~oaa/

[46] Lin Padgham and Michael Winikoff. “PrometheésPractical Agent-Oriented
Methodology.” In B. Henderson-Sellers and P. Giairgeditors), Agent-Oriented
Methodologies. ldea Group, 2005.

[47] Stuart Russell and Peter Norvigrtificial Intelligence: A Modern Approach.
Prentice Hall, second edition, 2003.

[48] David Sadek and R. De Mori. “Dialogue systeémis R. De Mori (Editor)Spoken
Dialogue with ComputersAcademic Press, 1998.

[49] David Sadek. “Design Considerations on Diale@ystems: From Theory to
Technology, The Case of Artimis.” Froceedings of the ESCA Workshop on
Interactive Dialogue in Multi-Modal Systentéloster Irsee, (pp. 173-188), 1999.

[50]John R. SearleExpression and Meaning: Studies in the Theory eEflp Acts
Cambridge University Press, 1979.

[51] Candice L. Sidner. “An artificial discoursaniguage for collaborative negotiation.”
In Proceedings of the Twelfth National Conference difiéial Intelligence,MIT
Press, Cambridge, Massachusetts, U.S.A., 1:8141%181.

[52] Candice L. Sidner. “Building Spoken Langudg@laborative Interface Agents.”
Technical Report, Mitsubishi Electric Research Lrabories, TR2002-038 August
2002.

[53] Ira A. Smith, Philip R. Cohen, Jeffery M. Bistthw, Mark Greaves and Heather
Holmback. “Designing conversational policies ugjoigt intention theory.” In
Proceedings of the International Conference on MAdient System®aris, France,
(pp. 269-276), July 3-7 1998.

[54]1. A. Smith and P. R. Cohen. “Toward a sentnfior an agent communication
language based on speech-acts.Pioceedings of the National Conference on
Artificial Intelligence AAAI Press, 1996.

[55] Stratagus, A Real Time Strategy Game. Sowgd-\Website.
http://stratagus.sourceforge.net/

[56] David R. Traum, and Elizabeth A. HinkelmarCdhversation acts in task-oriented
spoken dialogue.'Computational Intelligenc8(3):575-599. 1992. Special Issue
on Non-literal language.

[57] David R. Traum, and James F. Allen. “Disc@u@bligations in Dialogue

Processing.” IfProceedings of the 32nd Annual Meeting of the Aason for
Computational Linguisticdas Cruces, New Mexico, U.S.A., (pp. 1-8), 1994.

www.manaraa.com

231

[58] David R. Traum. “Coding Schemas for Spokeal®jue Structure.” 1996
Unpublished manuscript.

[59] Richard S. Wallace. “Don’t Read Me: A. L Q. E. and AIML Documentation.”
http://alicebot.org/articles/dont.html

[60] Peter Wegner. “Why Interaction is More Powifhan Algorithms.”
Communications of the ACW/ol. 40, No. 5. May 1997.

[61] J. Weizenbaum. “ELIZA — A computer program fbe study of natural language
communication between man and machin€édmmunications of the ACM(1):36-
45,

[62] Andrew B. Williams, George Thomas, Michael &€iaand John R. Lee. “IDOCS:
Collaboratively Describing and Classifying the kgas of AMD with Machine
Learning.” Invest Ophthalmol Vis Sci, ARVO, Forauderdale, Florida, U.S.A.,
April 30-May 4, 2006.

[63] F. Zambonelli, N. R. Jennings and M. Woolridg&lultiagent systems as
computational organizations: the Gaia methodolody.B. Henderson-Sellers and
P. Giorgini (Editors), Agent-Oriented Methodologiek36-171, Idea Group
Publishers, 2005.

www.manaraa.com

	Conversations with an intelligent agent: modeling and integrating patterns in communications among humans and agents
	Recommended Citation

	Final Deposit

